You like math? Well, then you must know this.

Calculus Level 1

lim n 0 1 + n n = ? \large{\lim_{n\to0}{\sqrt[n]{1+n}}=?}

2 e 2 e 2e^2-e 2 ln 2 2\ln2 ln 2 \ln2 e e e 2 e^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Omur Faruque
Oct 10, 2015

lim n 0 1 + n n = lim n 0 ( 1 + n ) 1 n \lim_{n\to0}{\sqrt[n]{1+n}}=\lim_{n\to0}{(1+n)^{\dfrac1n}} = e ln [ lim n 0 ( 1 + n ) 1 n ] =e^{\displaystyle \ln{[\lim_{n\to0}{(1+n)^{\frac1n}}]}} = e lim n 0 ln ( 1 + n ) 1 n =e^{\displaystyle \lim_{n\to0}{\ln{(1+n)^{\frac1n}}}} = e lim n 0 ln ( 1 + n ) n =e^{\displaystyle \lim_{n\to0}{\dfrac{\ln{(1+n)}}{n}}} = e lim n 0 1 1 + n 1 =e^{\displaystyle \lim_{n\to0}{\dfrac{\dfrac{1}{1+n}}{1}}} = e 1 = e =e^1=\color{#0C6AC7}{\boxed{e}}

However, it's only the definition of e e (slightly transformed though) from compound interest rate, which we don't need to prove. lim n 0 1 + n n = lim n 0 ( 1 + n ) 1 n \lim_{n\to0}{\sqrt[n]{1+n}}=\lim_{n\to0}{(1+n)^{\frac1n}} = lim n ( 1 + 1 n ) n = e =\lim_{n\to \infty}{\left(1+\frac1n\right)^n}=\color{#0C6AC7}{\boxed{e}}

For explanation please visit the Wikipedia page of e & Compound Interest .

I accidentally published incomplete solution and I deleted it, so I have to post here, sorry! lim n 0 1 + n n = lim n 0 ( 1 + n ) 1 n \lim_{n\to0}\sqrt[n]{1+n} =\lim_{n\to0}(1+n)^{\frac1n} Let t = 1 n t = \dfrac1n , so since t t\to\infty as n 0 + n\to0^+ and t t\to-\infty as n 0 n\to0^- , we need to split limit into lim n 0 + 1 + n n \displaystyle \lim_{n\to0^+}\sqrt[n]{1+n} and lim n 0 1 + n n \displaystyle \lim_{n\to0^-}\sqrt[n]{1+n}

Using the fact that lim n ( 1 + x n ) n = e x \displaystyle \lim_{n\to\infty}\left(1+\dfrac x n\right)^n = e^x , we have: lim n 0 + 1 + n n = lim t ( 1 + 1 t ) t = e \lim_{n\to0^+}\sqrt[n]{1+n} = \lim_{t\to\infty} \left(1+\dfrac1t\right)^t = e

And lim n 0 1 + n n = lim t ( 1 + 1 t ) t = lim t ( 1 + 1 t ) t = lim t 1 ( 1 + 1 t ) t = 1 e 1 = e \displaystyle \lim_{n\to0^-}\sqrt[n]{1+n} = \lim_{t\to-\infty} \left(1+\dfrac1t\right)^t = \lim_{t\to\infty} \left(1+\dfrac1{-t}\right)^{-t} = \lim_{t\to\infty}\dfrac1{ \left(1+\dfrac{-1}t\right)^t} = \dfrac1{e^{-1}} = e

Since both limits equal to e e , we have original limit equals to e \boxed{e} .

Micah Wood - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...