You may use algebra if you want

Algebra Level 4

x 2 x 1 = 0 , x 16 1 x 8 + 2 x 7 = ? \large x^2 - x - 1 = 0, \ \ \ \ \ \frac {x^{16}-1}{x^8 + 2x^7} = \ ?


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pi Han Goh
Apr 26, 2015

x 2 x 1 = 0 x 2 1 = x x 1 x = 1 ( x 1 x ) 2 = 1 x 2 + 1 x 2 = 3 ( x 2 + 1 x 2 ) 2 = 3 2 x 4 + 1 x 4 = 7 x 4 + 1 = 3 x 2 , x 8 + 1 = 7 x 4 x^2 - x - 1 = 0 \Rightarrow x^2 - 1 = x \Rightarrow x - \frac 1x = 1 \\ \Rightarrow \left (x - \frac 1x \right )^2 = 1 \Rightarrow x^2 + \frac 1{x^2} = 3 \\ \Rightarrow \left ( x^2 + \frac 1{x^2} \right )^2 = 3^2 \Rightarrow x^4 + \frac 1 {x^4} = 7 \\ \Rightarrow x^4 + 1 = 3x^2, x^8 + 1 = 7x^4

x 16 1 x 8 + 2 x 7 = ( x 2 1 ) ( x 2 + 1 ) ( x 4 + 1 ) ( x 8 + 1 ) x 7 ( x + 2 ) = ( x ) ( x + 2 ) ( 3 x 2 ) ( 7 x 4 ) x 7 ( x + 2 ) = 21 \begin{aligned} \frac {x^{16} - 1}{x^8 + 2x^7} &=& \frac {(x^2 - 1)(x^2 + 1)(x^4 + 1)(x^8 + 1) }{x^7(x+2)} \\ &=& \frac {(x)(x+2)(3x^2)(7x^4) }{x^7(x+2)} \\ &=& \boxed{21} \\ \end{aligned}

Brilliant!

James Wilson - 3 years, 6 months ago

Log in to reply

Thank you!!! =D ;)

Pi Han Goh - 3 years, 6 months ago
Chew-Seong Cheong
Apr 23, 2015

A root of x 2 x 1 = 0 x^2 - x - 1 = 0 is the golden ratio, φ = 1 + 5 2 \varphi = \frac {1+\sqrt{5}}{2} and its powers satisfy the following equation.

φ n = F n φ + F n 1 \varphi^n = F_n\varphi + F_{n-1} for n = 1 , 2 , 3 , . . . n=1,2,3,... , where F n F_n is the n t h n^{th} Fibonacci number and F 0 = 0 F_0 = 0 .

With an Excel spreadsheet we can easily find φ n \varphi^n :

\(\begin{array} {} \varphi \space \space = \varphi & \varphi^{5} = 5 \varphi + 3 & \varphi^{9} = 34 \varphi + 21 & \varphi^{13} = 233 \varphi + 144 \\ \varphi^{2} = \varphi + 1 & \varphi^{6} = 8 \varphi + 5 & \varphi^{10} = 55 \varphi + 34 & \varphi^{14} = 377 \varphi + 233 \\ \varphi^{3} = 2 \varphi + 1 & \varphi^{7} = 13 \varphi + 8 & \varphi^{11} = 89 \varphi + 55 & \varphi^{15} = 610 \varphi + 377 \\ \varphi^{4} = 3 \varphi + 2 & \varphi^{8} = 21 \varphi + 13 & \varphi^{12} = 144 \varphi + 89 & \varphi^{16} =987 \varphi + 610 \end{array} \)

x 16 1 x 8 + 2 x 7 = 987 φ + 610 1 21 φ + 13 + 2 ( 13 φ + 8 ) = 987 φ + 609 47 φ + 29 = 21 ( 47 φ + 29 ) 47 φ + 29 = 21 \Rightarrow \dfrac {x^{16}-1}{x^8+2x^7} = \dfrac {987 \varphi + 610 - 1}{21 \varphi + 13+2(13 \varphi + 8)} = \dfrac {987\varphi+609}{47\varphi+29} \\ \quad = \dfrac {21(47\varphi+29)}{47\varphi+29} = \boxed{21}

Moderator note:

Nice way of connecting it to the golden ratio. Although correct, it's rather tedious to calculate the first 15 Fibonacci numbers.

I bet Scott Flansburg could calculate the first 15 Fibonacci numbers in under 10 seconds! Anyway, this is how I would've done it. But I used a calculator lol. If no one had posted this solution yet though, I would've added it.

James Wilson - 3 years, 6 months ago
Christian Daang
Jan 8, 2015

From

x 2 x 1 = 0 x 2 = x + 1 x^2 - x - 1 = 0 \implies x^2 = x + 1

Then,

x 16 1 = ( x 8 + 1 ) ( x 4 + 1 ) ( x 2 + 1 ) ( x 2 1 ) = ( x 8 + 1 ) ( x 4 + 1 ) ( x + 2 ) ( x ) \begin{aligned} x^{16} - 1 &= (x^{8}+ 1) \cdot (x^{4} + 1) \cdot (x^{2} + 1 ) \cdot (x^2 - 1) \\ &= (x^{8}+ 1) \cdot (x^{4} + 1) \cdot (x+2) \cdot (x) \end{aligned}

and

x 8 + 2 x 7 = ( x 6 ) ( x 2 + 2 x ) = ( x 6 ) ( x + 2 ) ( x ) \begin{aligned} x^8 + 2x^7 &= (x^6) \cdot (x^2 + 2x) \\ &= (x^6) \cdot (x + 2) \cdot (x) \end{aligned}

Hence,

x 16 1 x 8 + 2 x 7 = ( x 8 + 1 ) ( x 4 + 1 ) ( x + 2 ) ( x ) ( x 6 ) ( x + 2 ) ( x ) = x 12 + x 8 + x 4 + 1 x 6 = x 6 + 1 x 6 + x 2 + 1 x 2 \begin{aligned} \dfrac{x^{16} - 1}{x^8 + 2x^7} &= \dfrac{ (x^{8}+ 1) \cdot (x^{4} + 1) \cdot (x+2) \cdot (x) }{ (x^6) \cdot (x + 2) \cdot (x) } \\ &= \dfrac{ x^{12} + x^8 + x^4 + 1 }{ x^6 } \\ &= x^6 + \dfrac{1}{x^6} + x^2 + \dfrac{1}{x^2} \end{aligned}

From Mr. @Pi Han Goh 's Solution,

x 2 + 1 x 2 = 3 x^2 + \dfrac{1}{x^2} = 3

Then,

x 6 + 1 x 6 = ( x 2 + 1 x 2 ) ( x 4 1 + 1 x 4 ) = ( x 2 + 1 x 2 ) ( ( x 2 + 1 x 2 ) 2 2 1 ) = ( 3 ) ( 3 2 3 ) = 18 \begin{aligned} x^6 + \dfrac{1}{x^6} &= \left( x^2 + \dfrac{1}{x^2} \right) \left(x^4 - 1 + \dfrac{1}{x^4} \right) \\ &= \left( x^2 + \dfrac{1}{x^2} \right) \left(\left(x^2 + \dfrac{1}{x^2}\right)^2 - 2 - 1 \right) \\ &= (3)(3^2 - 3) = 18 \end{aligned}

Therefore,

x 16 1 x 8 + 2 x 7 = x 6 + 1 x 6 + x 2 + 1 x 2 = 3 + 18 = 21 \begin{aligned} \dfrac{x^{16} - 1}{x^8 + 2x^7} &= x^6 + \dfrac{1}{x^6} + x^2 + \dfrac{1}{x^2} \\ &= 3 + 18 = \boxed{21} \end{aligned}

Brilliant!

James Wilson - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...