Revisit the properties of integrals

Calculus Level 3

I = 0 π x π 2 cos 2 x d x \large I = \int_0^\pi \frac x{\pi^2 - \cos^2 x} dx

Given the above, which of the options is true for I I ?

0 < I < 1 and I = π π 2 1 0<I<1 \text{ and } I = \frac \pi{\sqrt{\pi^2-1}} 1 < I < 2 and I = π π 2 1 1<I<2 \text{ and } I = \frac \pi{\sqrt{\pi^2-1}} 1 < I < 2 and I = π 2 π 2 1 1<I<2 \text{ and } I = \frac \pi{2\sqrt{\pi^2-1}} 0 < I < 1 and I = π 2 π 2 1 0<I<1 \text{ and } I = \frac \pi{2\sqrt{\pi^2-1}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 24, 2017

I = 0 π x π 2 cos 2 x d x Using identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π ( x π 2 cos 2 x + π x π 2 cos 2 x ) d x Note that cos ( π θ ) = cos θ = 1 2 0 π π π 2 cos 2 x d x The integral is symetrical at π 2 = π 0 π 2 1 π 2 cos 2 x d x Multiply up and down by sec 2 x = π 0 π 2 sec 2 x π 2 sec 2 x 1 d x Let t = tan x d t = sec x d x = π 0 1 π 2 t 2 + π 2 1 d t = π π 2 1 0 1 π 2 π 2 1 t 2 + 1 d t Let u = π t π 2 1 d u = π π 2 1 d t = 1 π 2 1 0 1 u 2 + 1 d u = 1 π 2 1 tan 1 u 0 = π 2 π 2 1 0.527 \begin{aligned} I & = \int_0^\pi \frac x{\pi^2 - \cos^2 x} dx & \small \color{#3D99F6} \text{Using identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\pi \left(\frac x{\pi^2 - \cos^2 x}+\frac {\pi-x}{\pi^2 - \cos^2 x} \right) dx & \small \color{#3D99F6} \text{Note that }\cos (\pi - \theta) = - \cos \theta \\ & = \frac 12 \int_0^\pi \frac \pi{\pi^2 - \cos^2 x} dx & \small \color{#3D99F6} \text{The integral is symetrical at }\frac \pi 2 \\ & = \pi \int_0^\frac \pi 2 \frac 1{\pi^2 - \cos^2 x} dx & \small \color{#3D99F6} \text{Multiply up and down by }\sec^2 x \\ & = \pi \int_0^\frac \pi 2 \frac {\sec^2 x}{\pi^2\sec^2 x - 1} dx & \small \color{#3D99F6} \text{Let }t = \tan x \implies dt = \sec^ x \ dx \\ & = \pi \int_0^\infty \frac 1{\pi^2t^2 + \pi^2 - 1} dt \\ & = \frac \pi {\pi^2-1} \int_0^\infty \frac 1{\frac {\pi^2}{\pi^2 - 1}t^2 + 1} dt & \small \color{#3D99F6} \text{Let }u = \frac {\pi t}{\sqrt{\pi^2-1}} \implies du = \frac \pi{\sqrt{\pi^2-1}} dt \\ & = \frac 1{\sqrt{\pi^2-1}} \int_0^\infty \frac 1{u^2 + 1} du \\ & = \frac 1{\sqrt{\pi^2-1}} \tan^{-1} u \ \bigg|_0^\infty \\ & = \frac \pi{2\sqrt{\pi^2-1}} \approx 0.527 \end{aligned}

Therefore, the answer is 0 < I < 1 and I = π 2 π 2 1 \boxed{0<I<1 \text{ and } I = \dfrac \pi{2\sqrt{\pi^2-1}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...