The above can be expressed as , where and are positive integers. Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Consider the integral I = ∫ 0 ∞ e x 2 i cos x d x = ∫ 0 ∞ cos x cos x 2 d x + i ∫ 0 ∞ cos x sin x 2 d x . Implying that the real part ℜ ( I ) = ∫ 0 ∞ cos x cos x 2 d x and the imaginary part ℑ ( I ) = ∫ 0 ∞ cos x sin x 2 d x .
I = ∫ 0 ∞ e x 2 i cos x d x = ∫ 0 ∞ e x 2 i ⋅ 2 e x i + e − x i d x = 2 1 ( ∫ 0 ∞ e ( x 2 + x ) i d x + ∫ 0 ∞ e ( x 2 − x ) i d x ) = 2 1 ( ∫ 0 ∞ e ( ( x + 2 1 ) 2 − 4 1 ) i d x + ∫ 0 ∞ e ( ( x − 2 1 ) 2 − 4 1 ) i d x ) = 2 e − 4 i ( ∫ 2 1 ∞ e u 2 i d u + ∫ − 2 1 ∞ e v 2 i d v ) = 2 e − 4 i ( ∫ 0 ∞ e u 2 i d u + ∫ 0 2 1 e u 2 i d u + ∫ − 2 1 0 e v 2 i d v + ∫ 0 ∞ e v 2 i d v ) = 2 e − 4 i ( ∫ 0 ∞ e u 2 i d u + ∫ 0 2 1 e u 2 i d u − ∫ 0 2 1 e v 2 i d v + ∫ 0 ∞ e v 2 i d v ) = e − 4 i ∫ 0 ∞ e u 2 i d u = e 4 π − 1 i ∫ 0 ∞ e − t 2 d t = e 4 π − 1 i ⋅ 2 π erf ( ∞ ) = 2 π e 4 π − 1 i = 2 π ( cos 4 π + i sin 4 π ) ( cos 4 1 − i sin 4 1 ) = 8 π ( 1 + i ) ( cos 4 1 − i sin 4 1 ) = 8 π ( cos 4 1 + sin 4 1 + i ( cos 4 1 − sin 4 1 ) ) Let u = x + 2 1 , v = x − 2 1 Let − t 2 = u 2 i ⟹ e 4 π i d t = d u Error function erf ( ∞ ) = 1
Then we have ∫ 0 ∞ cos x cos x 2 d x ∫ 0 ∞ cos x sin x 2 d x = ℜ ( I ) ℑ ( I ) = 8 π ( cos 2 4 1 − sin 2 4 1 ) = 8 π cos 2 1 . Therefore, A + B = 8 + 2 = 1 0 .