You should look at the graphs of these functions

Calculus Level 3

0 cos ( x ) cos ( x 2 ) d x 0 cos ( x ) sin ( x 2 ) d x \int _{ 0 }^{ \infty }{ \cos { \left( x \right) } \cos { \left( { x }^{ 2 } \right) } dx } \int _{ 0 }^{ \infty }{ \cos { \left( x \right) } \sin { \left( { x }^{ 2 } \right) } dx }

The above can be expressed as π A cos ( 1 B ) \frac { \pi }{ A } \cos { \left( \frac { 1 }{ B } \right) } , where A A and B B are positive integers. Find A + B A+B .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider the integral I = 0 e x 2 i cos x d x = 0 cos x cos x 2 d x + i 0 cos x sin x 2 d x \displaystyle I = \int_0^\infty e^{x^2i} \cos x \ dx = \int_0^\infty \cos x \cos x^2 \ dx + i \int_0^\infty \cos x \sin x^2 \ dx . Implying that the real part ( I ) = 0 cos x cos x 2 d x \displaystyle \Re(I) = \int_0^\infty \cos x \cos x^2 \ dx and the imaginary part ( I ) = 0 cos x sin x 2 d x \displaystyle \Im(I) = \int_0^\infty \cos x \sin x^2 dx .

I = 0 e x 2 i cos x d x = 0 e x 2 i e x i + e x i 2 d x = 1 2 ( 0 e ( x 2 + x ) i d x + 0 e ( x 2 x ) i d x ) = 1 2 ( 0 e ( ( x + 1 2 ) 2 1 4 ) i d x + 0 e ( ( x 1 2 ) 2 1 4 ) i d x ) Let u = x + 1 2 , v = x 1 2 = e i 4 2 ( 1 2 e u 2 i d u + 1 2 e v 2 i d v ) = e i 4 2 ( 0 e u 2 i d u + 0 1 2 e u 2 i d u + 1 2 0 e v 2 i d v + 0 e v 2 i d v ) = e i 4 2 ( 0 e u 2 i d u + 0 1 2 e u 2 i d u 0 1 2 e v 2 i d v + 0 e v 2 i d v ) = e i 4 0 e u 2 i d u Let t 2 = u 2 i e π 4 i d t = d u = e π 1 4 i 0 e t 2 d t = e π 1 4 i π 2 erf ( ) = π e π 1 4 i 2 Error function erf ( ) = 1 = π 2 ( cos π 4 + i sin π 4 ) ( cos 1 4 i sin 1 4 ) = π 8 ( 1 + i ) ( cos 1 4 i sin 1 4 ) = π 8 ( cos 1 4 + sin 1 4 + i ( cos 1 4 sin 1 4 ) ) \begin{aligned} I & = \int_0^\infty e^{x^2i} \cos x \ dx = \int_0^\infty e^{x^2i} \cdot \frac {e^{xi} + e^{-xi}}2 dx \\ & = \frac 12\left(\int_0^\infty e^{(x^2+x)i} dx + \int_0^\infty e^{(x^2-x)i} dx\right) \\ & = \frac 12\left(\int_0^\infty e^{\left(\left(x+\frac 12\right)^2 - \frac 14\right)i} dx + \int_0^\infty e^{\left(\left(x-\frac 12\right)^2 - \frac 14\right)i} dx\right) & \small \color{#3D99F6} \text{Let }u = x+\frac 12, v = x - \frac 12 \\ & = \frac {e^{-\frac i4}}2\left(\int_{\frac 12}^\infty e^{u^2i} du + \int_{-\frac 12}^\infty e^{v^2i} dv \right) \\ & = \frac {e^{-\frac i4}}2\left(\int_0^\infty e^{u^2i} du + \int^{\frac 12}_0 e^{u^2i} du + \int_{-\frac 12}^0 e^{v^2i} dv + \int_0^\infty e^{v^2i} dv \right) \\ & = \frac {e^{-\frac i4}}2\left(\int_0^\infty e^{u^2i} du + \int^{\frac 12}_0 e^{u^2i} du - \int_0^{\frac 12} e^{v^2i} dv + \int_0^\infty e^{v^2i} dv \right) \\ & = e^{-\frac i4} \int_0^\infty e^{\color{#3D99F6}u^2i} du & \small \color{#3D99F6} \text{Let }-t^2 = u^2 i \implies e^{\frac \pi 4 i} dt = du \\ & = e^{\frac {\pi - 1}4i} {\color{#3D99F6} \int_0^\infty e^{-t^2} dt} = e^{\frac {\pi - 1}4i} \cdot {\color{#3D99F6}\frac {\sqrt \pi}2\text{ erf }(\infty)} = \frac {\sqrt \pi e^{\frac {\pi - 1}4i}}2 & \small \color{#3D99F6} \text{Error function erf }(\infty) = 1 \\ & = \frac {\sqrt \pi}2 \left(\cos \frac \pi 4 + i\sin \frac \pi 4\right) \left(\cos \frac 14 - i\sin \frac 14\right) \\ & = \sqrt {\frac \pi 8} \left(1 + i\right) \left(\cos \frac 14 - i\sin \frac 14\right) \\ & = \sqrt {\frac \pi 8} \left(\cos \frac 14 + \sin \frac 14 + i\left(\cos \frac 14 - \sin \frac 14 \right) \right) \end{aligned}

Then we have 0 cos x cos x 2 d x 0 cos x sin x 2 d x = ( I ) ( I ) = π 8 ( cos 2 1 4 sin 2 1 4 ) = π 8 cos 1 2 \displaystyle \int_0^\infty \cos x \cos x^2 \ dx \int_0^\infty \cos x \sin x^2 \ dx = \Re(I) \Im(I) = \frac \pi 8 \left( \cos^2 \frac 14 - \sin^2 \frac 14 \right) = \frac \pi 8 \cos \frac 12 . Therefore, A + B = 8 + 2 = 10 A+B = 8 + 2 = \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...