You shouldn't need The Wizard for this one

Calculus Level 5

( a 2 x 2 + b x + c ) e 25 ( a 2 x 2 + b x + c ) d x = 1 m e 25 ( c + b 2 4 a 2 ) π a [ c + b 2 4 a 2 1 n ] \int_{-\infty}^\infty (-a^2x^2+bx+c)e^{25(-a^2x^2+bx+c)}dx=\frac{1}{m}e^{25(c+\frac{b^2}{4a^2})}\frac{\sqrt{\pi}}{a}\Big[c+\frac{b^2}{4a^2}-\frac{1}{n}\Big]

The equation above holds for constants a , b , c a,b,c and a 0 a\ne0 . Find m + n . m+n.


The answer is 55.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

James Wilson
Jan 15, 2021

Let I ( α ) = ( a 2 x 2 + b x + c ) e α ( a 2 x 2 + b x + c ) d x . I(\alpha)=\int_{-\infty}^{\infty} (-a^2x^2+bx+c)e^{\alpha(-a^2x^2+bx+c)}dx.

Then I ( α ) d α = e α ( a 2 x 2 + b x + c ) d x + C \int I(\alpha)d\alpha = \int_{-\infty}^{\infty}e^{\alpha(-a^2x^2+bx+c)}dx+C

= e α ( c + b 2 4 a 2 ) e α a 2 ( x b 2 a 2 ) 2 d x + C =e^{\alpha\Big(c+\frac{b^2}{4a^2}\Big)}\int_{-\infty}^{\infty} e^{-\alpha a^2\Big(x-\frac{b}{2a^2}\Big)^2}dx+C

= e α ( c + b 2 4 a 2 ) π α a 2 + C =e^{\alpha\Big(c+\frac{b^2}{4a^2}\Big)}\sqrt{\frac{\pi}{\alpha a^2}}+C

I ( α ) = d d α I ( α ) d α = ( c + b 2 4 a 2 ) e α ( c + b 2 4 a 2 ) π α a 2 + e α ( c + b 2 4 a 2 ) ( 1 2 π α 3 a 2 ) I(\alpha)=\frac{d}{d\alpha}\int I(\alpha)d\alpha=\Big(c+\frac{b^2}{4a^2}\Big)e^{\alpha\Big(c+\frac{b^2}{4a^2}\Big)}\sqrt{\frac{\pi}{\alpha a^2}}+e^{\alpha\Big(c+\frac{b^2}{4a^2}\Big)}\Big(-\frac{1}{2}\sqrt{\frac{\pi}{\alpha^3a^2}}\Big)

= 1 α e α ( c + b 2 4 a 2 ) π a [ c + b 2 4 a 2 1 2 α ] . =\frac{1}{\sqrt{\alpha}}e^{\alpha\Big(c+\frac{b^2}{4a^2}\Big)}\frac{\sqrt{\pi}}{a}\Big[c+\frac{b^2}{4a^2}-\frac{1}{2\alpha}\Big].

Letting α = 25 \alpha=25 leads to the result.

ChengYiin Ong
Jan 18, 2021

A cheeky solution (lol)

Since we know that the equation above holds for all constants a , b , c a,b,c , we can pick a , b , c a,b,c which make our life easier, let's pick c = b = 0 c=b=0 and a = 1 a=1 !

The desired integral reduces to x 2 e 25 x 2 d x = x 50 e 25 x 2 = 0 1 50 e 25 x 2 d x = 1 50 5 e u 2 d u = π 50 5 \int_{-\infty}^{\infty} -x^2e^{-25x^2} \, dx=\cancelto{=0}{\left. -\frac{x}{50} e^{-25x^2} \right|_{-\infty}^{\infty}}-\frac{1}{50}\int_{-\infty}^{\infty} e^{-25x^2} \, dx=-\frac{1}{50\cdot 5} \int_{-\infty}^{\infty} e^{-u^2} \, du=-\frac{\sqrt \pi}{50 \cdot 5} with a substitution $u=5x$ at the end and based on the given equation, our result should be π m n \displaystyle -\frac{\sqrt{\pi}}{m \cdot n} and we can should take m + n = 5 + 50 = 55 m+n=5+50=55 .

See? You don't need to be a wizard! lol

James Wilson - 4 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...