∫ − ∞ ∞ ( − a 2 x 2 + b x + c ) e 2 5 ( − a 2 x 2 + b x + c ) d x = m 1 e 2 5 ( c + 4 a 2 b 2 ) a π [ c + 4 a 2 b 2 − n 1 ]
The equation above holds for constants a , b , c and a = 0 . Find m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A cheeky solution (lol)
Since we know that the equation above holds for all constants a , b , c , we can pick a , b , c which make our life easier, let's pick c = b = 0 and a = 1 !
The desired integral reduces to ∫ − ∞ ∞ − x 2 e − 2 5 x 2 d x = − 5 0 x e − 2 5 x 2 ∣ ∣ ∣ − ∞ ∞ = 0 − 5 0 1 ∫ − ∞ ∞ e − 2 5 x 2 d x = − 5 0 ⋅ 5 1 ∫ − ∞ ∞ e − u 2 d u = − 5 0 ⋅ 5 π with a substitution $u=5x$ at the end and based on the given equation, our result should be − m ⋅ n π and we can should take m + n = 5 + 5 0 = 5 5 .
See? You don't need to be a wizard! lol
Problem Loading...
Note Loading...
Set Loading...
Let I ( α ) = ∫ − ∞ ∞ ( − a 2 x 2 + b x + c ) e α ( − a 2 x 2 + b x + c ) d x .
Then ∫ I ( α ) d α = ∫ − ∞ ∞ e α ( − a 2 x 2 + b x + c ) d x + C
= e α ( c + 4 a 2 b 2 ) ∫ − ∞ ∞ e − α a 2 ( x − 2 a 2 b ) 2 d x + C
= e α ( c + 4 a 2 b 2 ) α a 2 π + C
I ( α ) = d α d ∫ I ( α ) d α = ( c + 4 a 2 b 2 ) e α ( c + 4 a 2 b 2 ) α a 2 π + e α ( c + 4 a 2 b 2 ) ( − 2 1 α 3 a 2 π )
= α 1 e α ( c + 4 a 2 b 2 ) a π [ c + 4 a 2 b 2 − 2 α 1 ] .
Letting α = 2 5 leads to the result.