∫ 0 ∞ e − x ∣ sin x ∣ d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
could u explain what happened to -1^k in second step ! ( i have done this ques but this is a feedback to improve your solution) , i'll be glad if u explained that part !
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 ∞ e − x ∣ sin x ∣ d x = k = 0 ∑ ∞ ( − 1 ) k ∫ k π ( k + 1 ) π e − x sin x d x = k = 0 ∑ ∞ 2 e − k π + e − ( k + 1 ) π = 2 1 + k = 1 ∑ ∞ e − k π = 2 1 + 1 − e − π e − π = 2 ( 1 − e − π ) 1 + e − π For k π ≤ x < ( k + 1 ) π , ∣ sin x ∣ = { sin x − sin x if k is even if k is odd By integration by parts, see Note A sum of geometric progression
Integration by parts
J ⟹ ( − 1 ) k J = ∫ k π ( k + 1 ) π e − x sin x d x = e − x sin x ∣ ∣ ∣ ∣ ( k + 1 ) π k π + ∫ k π ( k + 1 ) π e − x cos x d x = 0 + e − x cos x ∣ ∣ ∣ ∣ ( k + 1 ) π k π − ∫ k π ( k + 1 ) π e − x sin x d x = e − ( k + 1 ) π + e − k π − J = 2 e − ( k + 1 ) π + e − k π f ′ ( x ) = e − x , g ( x ) = sin x f ′ ( x ) = e − x , g ( x ) = cos x