Integrating Absolutes

Calculus Level 2

0 e x sin x d x = ? \large \int_0^\infty e^{-x}|\sin x| \, dx = \, ?

e π + 1 2 e 2 π \frac{{e}^{\pi}+1}{2{e}^{2\pi}} e 2 π 1 2 e 2 π \frac{{e}^{-2\pi}-1}{2{e}^{-2\pi}} 1 + e π 2 ( 1 e π ) \frac{1+{e}^{-\pi}}{2(1-{e}^{-\pi})} e π 2 e 2 π 2 \frac{{e}^{-\pi}}{2e^{-2\pi}-2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 27, 2016

I = 0 e x sin x d x For k π x < ( k + 1 ) π , sin x = { sin x if k is even sin x if k is odd = k = 0 ( 1 ) k k π ( k + 1 ) π e x sin x d x By integration by parts, see Note = k = 0 e k π + e ( k + 1 ) π 2 = 1 2 + k = 1 e k π A sum of geometric progression = 1 2 + e π 1 e π = 1 + e π 2 ( 1 e π ) \begin{aligned} I & = \int_0^\infty e^{-x} |\sin x| \ dx & \small \color{#3D99F6} \text{For }k \pi \le x < (k+1) \pi, |\sin x| = \begin{cases} \sin x & \text{if }k \text{ is even} \\ - \sin x & \text{if }k \text{ is odd} \end{cases} \\ & = \sum_{k=0}^\infty (-1)^k \int_{k\pi}^{(k+1)\pi} e^{-x} \sin x \ dx & \small \color{#3D99F6}{\text{By integration by parts, see Note}} \\ & = \sum_{k=0}^\infty \frac {e^{-k\pi} + e^{-(k+1)\pi}}2 \\ & = \frac 12 + \color{#3D99F6}{\sum_{k=1}^\infty e^{-k\pi}} & \small \color{#3D99F6}{\text{A sum of geometric progression}} \\ & = \frac 12 + \color{#3D99F6}{\frac {e^{-\pi}}{1-e^{-\pi}}} \\ & = \boxed{\dfrac {1+e^{-\pi}}{2(1-e^{-\pi})}} \end{aligned}


Integration by parts

J = k π ( k + 1 ) π e x sin x d x f ( x ) = e x , g ( x ) = sin x = e x sin x ( k + 1 ) π k π + k π ( k + 1 ) π e x cos x d x f ( x ) = e x , g ( x ) = cos x = 0 + e x cos x ( k + 1 ) π k π k π ( k + 1 ) π e x sin x d x = e ( k + 1 ) π + e k π J ( 1 ) k J = e ( k + 1 ) π + e k π 2 \begin{aligned} J & = \int_{k\pi}^{(k+1)\pi} e^{-x} \sin x \ dx & \small \color{#3D99F6}{f'(x) = e^{-x}, \ g(x) = \sin x} \\ & = e^{-x}\sin x\bigg| _{(k+1)\pi}^{k\pi} + \int_{k\pi}^{(k+1)\pi} e^{-x} \cos x \ dx & \small \color{#3D99F6}{f'(x) = e^{-x}, \ g(x) = \cos x} \\ & = 0 + e^{-x} \cos x \bigg| _{(k+1)\pi}^{k\pi} - \color{#3D99F6}{\int_{k\pi}^{(k+1)\pi} e^{-x} \sin x \ dx} \\ & = e^{-(k+1)\pi} + e^{-k\pi} - \color{#3D99F6}{J} \\ \implies (-1)^k J & = \frac {e^{-(k+1)\pi} + e^{-k\pi}}2 \end{aligned}

could u explain what happened to -1^k in second step ! ( i have done this ques but this is a feedback to improve your solution) , i'll be glad if u explained that part !

A Former Brilliant Member - 4 years, 8 months ago

Log in to reply

Thanks, I was thinking where to put it.

Chew-Seong Cheong - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...