You'll be stuck

Geometry Level 3

In A B C \triangle ABC , let D D be the midpoint of B C \overline{BC} . If A D B = 4 5 \angle ADB = 45^\circ and A C D = 3 0 \angle ACD = 30^\circ , what is B A D \angle BAD in degrees?


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 24, 2014

Let B C = a BC = a , A C = b AC = b , A B = c AB = c , A D = d AD = d and B A D = θ \angle BAD = \theta . We note that B A C = θ + 1 5 \angle BAC = \theta + 15^\circ . Using Sine Rule, we have:

{ sin θ a 2 = sin 4 5 c sin θ = a 2 2 c sin ( θ + 1 5 ) a = sin 3 0 c sin ( θ + 1 5 ) = a 2 c \begin {cases} \dfrac {\sin{\theta}}{\frac{a}{2}} = \dfrac {\sin {45^\circ}}{c} & \Rightarrow \sin {\theta} = \dfrac {a}{2\sqrt{2}c} \\ \dfrac {\sin{(\theta+15^\circ)}}{a} = \dfrac {\sin {30^\circ}}{c} & \Rightarrow \sin {(\theta+15^\circ)} = \dfrac {a}{2c} \end {cases}

sin ( θ + 1 5 ) sin θ = 2 = 1 2 × 2 1 2 = 1 2 1 2 = sin 4 5 sin 3 0 θ = 3 0 \Rightarrow \dfrac { \sin {(\theta+15^\circ)} } {\sin{\theta}} = \sqrt{2} = \dfrac {\frac{1}{2} \times \sqrt{2}} {\frac {1}{2}} = \dfrac {\frac{1}{\sqrt{2}} }{\frac {1}{2}} = \dfrac {\sin {45^\circ}} {\sin {30^\circ}} \quad \Rightarrow \theta = \boxed {30^\circ}

You are Un-Comparable!!!!!!!!!!! The last step is a beauty

Sudhir Aripirala - 6 years, 4 months ago

Good use of sine rule

RAMAN PANDEY - 1 year, 5 months ago

Let BF be orthogonal to the side AC with point F on AC. As angle DCB equals 30, then from the right triangle we get B F = B C sin 3 0 = B C / 2 = B D = D F BF=BC \sin 30 ^ \circ = BC / 2 =BD=DF .

Then, F B D = 6 0 \angle FBD = 60 ^ \circ and B F = F D BF = FD , so B F D BFD is an equilateral triangle. This gives us F D B = 6 0 \angle FDB = 60 ^ \circ and F D A = 6 0 4 5 = 1 5 \angle FDA = 60 ^ \circ - 45 ^ \circ = 15 ^ \circ .

Since F A D \angle FAD and D F A \angle DFA are both 1 5 15 ^ \circ , so F A D FAD is an isosceles triangle with A F = F D AF = FD . Since A D = F D = B F AD = FD = BF , thus A F B AFB is an isosceles triangle and F A B = 4 5 \angle FAB = 45 ^ \circ .

Thus, B A D = B A F D A F = 4 5 1 5 = 3 0 \angle BAD = \angle BAF - \angle DAF = 45 ^ \circ - 15 ^ \circ = 30 ^ \circ .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...