∫ ( x sin x + 5 cos x ) 2 x 2 + 2 0 d x = cos x ( x sin x + B cos x ) − A x + tan x + C
Find A B + B A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I also took your approach. But, what would we do if we were needed to evaluate the LHS without the almost-obvious hint (i.e. the RHS)?
Log in to reply
Use partial fractions then proceed.
I have provided a new approach but still using the obvious hint.
@Atomsky Jahid ,my solution can make you solve without r.h.s.
same i did.
The above integral can be written as: I = ∫ ( x sin x + 5 cos x ) 2 x 2 + 2 0 d x
I = ∫ ( x 5 sin x + 5 x 4 cos x ) 2 ( x 8 ) ( x 2 + 2 0 ) d x
Note that d x d ( x 5 sin x + 5 x 4 cos x ) = ( 2 0 + x 2 ) x 3 cos x
Now integration by part can easily make an above type format, (let me know if anyone needs IBP )
There is a typo in your solution. Also, it'll be appreciated if you provide a full explanation of the processes you used to solve this problem.
Problem Loading...
Note Loading...
Set Loading...
Given that ∫ ( x sin x + 5 cos x ) 2 x 2 + 2 0 d x = cos x ( x sin x + B cos x ) − A x + tan x + C
⟹ ( x sin x + 5 cos x ) 2 x 2 + 2 0 = d x d ( cos x ( x sin x + B cos x ) − A x + tan x + C ) = cos 2 x ( x sin x + B cos x ) 2 − A cos x ( x sin x + B cos x ) + A x ( − sin x ( x sin x + B cos x ) + cos x ( sin x + x cos x − B sin x ) ) + sec 2 x = cos 2 x ( x sin x + B cos x ) 2 − A x sin x cos x − A B cos 2 x − A x 2 sin 2 x − A B x sin x cos x + A x sin x cos x + A x 2 cos 2 x − A B x sin x cos x + cos 2 x 1 = cos 2 x ( x sin x + B cos x ) 2 A x 2 ( cos 2 x − sin 2 x ) − 2 A B x sin x cos x − A B cos 2 x + ( x sin x + B cos x ) 2 = cos 2 x ( x sin x + B cos x ) 2 A x 2 ( 2 cos 2 x − 1 ) − 2 A B x sin x cos x − A B cos 2 x + x 2 sin 2 x + 2 B x sin x cos x + B 2 cos 2 x = cos 2 x ( x sin x + B cos x ) 2 ( 2 A cos 2 x − A + sin 2 x ) x 2 + 2 B ( 1 − A ) x sin x cos x + B ( B − A ) cos 2 x = cos 2 x ( x sin x + B cos x ) 2 ( 2 A cos 2 x − A + 1 − cos 2 x ) x 2 + 2 B ( 1 − A ) x sin x cos x + B ( B − A ) cos 2 x = ( x sin x + B cos x ) 2 ( 2 A − 1 ) x 2 + ( 1 − A ) x 2 sec 2 x + 2 B ( 1 − A ) x tan x + B ( B − A )
Comparing the coefficients both sides, we have A = 1 and B = 5 and A B + B A = 1 5 + 5 1 = 6