You will find it different

Calculus Level 4

x 2 + 20 ( x sin x + 5 cos x ) 2 d x = A x cos x ( x sin x + B cos x ) + tan x + C \large \int \frac{x^2+20}{(x \sin x+ 5 \cos x)^{2}} dx = \frac{-Ax}{\cos x (x \sin x + B \cos x)} +\tan x + C

Find A B + B A A^{B} + B^{A} .

10 5 6 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 19, 2017

Given that x 2 + 20 ( x sin x + 5 cos x ) 2 d x = A x cos x ( x sin x + B cos x ) + tan x + C \begin{aligned} \int \frac {x^2+20}{(x\sin x + 5\cos x)^2} dx & = \frac {-Ax}{\cos x(x\sin x + B\cos x)} + \tan x + C\end{aligned}

x 2 + 20 ( x sin x + 5 cos x ) 2 = d d x ( A x cos x ( x sin x + B cos x ) + tan x + C ) = A cos x ( x sin x + B cos x ) + A x ( sin x ( x sin x + B cos x ) + cos x ( sin x + x cos x B sin x ) ) cos 2 x ( x sin x + B cos x ) 2 + sec 2 x = A x sin x cos x A B cos 2 x A x 2 sin 2 x A B x sin x cos x + A x sin x cos x + A x 2 cos 2 x A B x sin x cos x cos 2 x ( x sin x + B cos x ) 2 + 1 cos 2 x = A x 2 ( cos 2 x sin 2 x ) 2 A B x sin x cos x A B cos 2 x + ( x sin x + B cos x ) 2 cos 2 x ( x sin x + B cos x ) 2 = A x 2 ( 2 cos 2 x 1 ) 2 A B x sin x cos x A B cos 2 x + x 2 sin 2 x + 2 B x sin x cos x + B 2 cos 2 x cos 2 x ( x sin x + B cos x ) 2 = ( 2 A cos 2 x A + sin 2 x ) x 2 + 2 B ( 1 A ) x sin x cos x + B ( B A ) cos 2 x cos 2 x ( x sin x + B cos x ) 2 = ( 2 A cos 2 x A + 1 cos 2 x ) x 2 + 2 B ( 1 A ) x sin x cos x + B ( B A ) cos 2 x cos 2 x ( x sin x + B cos x ) 2 = ( 2 A 1 ) x 2 + ( 1 A ) x 2 sec 2 x + 2 B ( 1 A ) x tan x + B ( B A ) ( x sin x + B cos x ) 2 \begin{aligned} \implies \frac {x^2+20}{(x\sin x + 5\cos x)^2} & = \frac d{dx} \left(\frac {-Ax}{\cos x(x\sin x + B\cos x)} + \tan x + C \right) \\ & = \frac {-A\cos x(x\sin x + B\cos x)+Ax(-\sin x(x\sin x + B\cos x) + \cos x(\sin x + x\cos x - B\sin x))}{\cos^2 x(x\sin x + B\cos x)^2} + \sec^2 x \\ & = \frac {-Ax\sin x\cos x -AB\cos^2 x-Ax^2\sin^2 x - ABx\sin x \cos x + Ax \sin x\cos x + Ax^2\cos^2 x - ABx\sin x\cos x}{\cos^2 x(x\sin x + B\cos x)^2} + \frac 1 {\cos^2 x} \\ & = \frac {Ax^2(\cos^2 x - \sin^2 x) - 2ABx\sin x\cos x -AB\cos^2 x +(x\sin x + B\cos x)^2}{\cos^2 x(x\sin x + B\cos x)^2} \\ & = \frac {Ax^2(2\cos^2 x - 1) - 2ABx\sin x\cos x -AB\cos^2 x +x^2\sin^2 x + 2Bx\sin x \cos x + B^2\cos^2 x}{\cos^2 x(x\sin x + B\cos x)^2} \\ & = \frac {(2A\cos^2 x-A + \sin^2 x)x^2 + 2B(1-A)x\sin x\cos x +B(B-A)\cos^2 x}{\cos^2 x(x\sin x + B\cos x)^2} \\ & = \frac {(2A\cos^2 x-A + 1 - \cos^2 x)x^2 + 2B(1-A)x\sin x\cos x +B(B-A)\cos^2 x}{\cos^2 x(x\sin x + B\cos x)^2} \\ & = \frac {(2A-1)x^2 + (1-A)x^2 \sec^2 x + 2B(1-A)x\tan x +B(B-A)}{(x\sin x + B\cos x)^2} \end{aligned}

Comparing the coefficients both sides, we have A = 1 A=1 and B = 5 B=5 and A B + B A = 1 5 + 5 1 = 6 A^B+B^A = 1^5+5^1 = \boxed{6}

I also took your approach. But, what would we do if we were needed to evaluate the LHS without the almost-obvious hint (i.e. the RHS)?

Atomsky Jahid - 3 years, 7 months ago

Log in to reply

Use partial fractions then proceed.

Chew-Seong Cheong - 3 years, 7 months ago

I have provided a new approach but still using the obvious hint.

Chew-Seong Cheong - 3 years, 7 months ago

@Atomsky Jahid ,my solution can make you solve without r.h.s.

Rakshit Joshi - 3 years, 7 months ago

same i did.

Ashutosh Sharma - 3 years, 2 months ago
Rakshit Joshi
Oct 21, 2017

The above integral can be written as: I = x 2 + 20 ( x sin x + 5 cos x ) 2 d x I= \large \int \frac{x^2+20}{(x \sin x+ 5 \cos x)^2 } dx

I = ( x 8 ) ( x 2 + 20 ) ( x 5 sin x + 5 x 4 cos x ) 2 d x I= \large \int \dfrac{\color{#3D99F6} (x^8 )\color{#333333} (x^2+20)}{(x^5 \sin x+ 5x^4 \cos x)^{2}} dx

Note that d d x ( x 5 sin x + 5 x 4 cos x ) = ( 20 + x 2 ) x 3 cos x \frac{d}{dx} (x^5 \sin x+ 5x^4 \cos x) = (20+x^2)x^{3} \cos x

Now integration by part can easily make an above type format, (let me know if anyone needs IBP )

There is a typo in your solution. Also, it'll be appreciated if you provide a full explanation of the processes you used to solve this problem.

Atomsky Jahid - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...