You will surely learn something from it!

Geometry Level 3

cos 5 x = a cos 5 x + b cos 3 x + c cos x \cos 5x=a \cos^5 x+b \cos^3 x+c \cos x

If a , b , a, b, and c c are constants that satisfy the trigonometric identity above, find the value of c . c.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ayush Verma
Oct 11, 2014

c = l i m x π 2 ( a c o s 4 x + b c o s 2 x + c ) = l i m x π 2 c o s 5 x c o s x ( 0 0 f o r m ) = l i m x π 2 5 s i n 5 x s i n x = 5 c={ lim }_{ x\rightarrow \cfrac { \pi }{ 2 } }(a{ \quad cos }^{ 4 }x+b{ \quad cos }^{ 2 }x+c)\\ \\ \quad ={ lim }_{ x\rightarrow \cfrac { \pi }{ 2 } }\cfrac { cos5x }{ cosx } \quad (\cfrac { 0 }{ 0 } \quad form)\\ \\ \quad ={ lim }_{ x\rightarrow \cfrac { \pi }{ 2 } }\cfrac { -5sin5x }{ -sinx } =5

That's a really nice way of looking at it, and allows us to easily generalize to cos ( 2 n + 1 ) θ \cos ( 2n+1) \theta .

Calvin Lin Staff - 6 years, 7 months ago

Nice solution...

Sanjeet Raria - 6 years, 7 months ago

Nice solution! There's a shorter way to get the answer then :D

Btw, use \left(\dfrac{0}{0}\right) instead. It displays as ( 0 0 ) \left(\dfrac{0}{0}\right) . That's what you use if you want to enclose stuff like fractions in parentheses.

Sean Ty - 6 years, 7 months ago

Log in to reply

Thanks,Sir.

Ayush Verma - 6 years, 1 month ago

Can you please explain your steps with reason? I am at a lost to understand. Thanks.

Niranjan Khanderia - 6 years, 4 months ago

Log in to reply

Sir,Actually when i observed that cosx is common i thought if somehow i can reduce term containing a & b to zero then c can be easily find out

Ayush Verma - 6 years, 1 month ago

Nice solution.

harsh soni - 6 years, 2 months ago
Sean Ty
Oct 29, 2014

I used θ \theta instead of x x . Anyways, no calculus required!

Note that cos 5 θ \cos5\theta is simply the real part of e 5 i θ = cos 5 θ + i sin 5 θ e^{5i\theta}=\cos5\theta + i\sin5\theta .

By DeMoivre's Theorem , We have cos 5 θ + i sin 5 θ = ( c o s θ + i sin θ ) 5 \cos5\theta+i\sin 5\theta=(cos\theta+i\sin\theta)^5 .

Expanding, and taking note of the identity sin 2 θ = 1 cos 2 θ \sin^2 \theta=1- \cos^2 \theta , the real part is then 16 cos 5 θ 20 cos 3 θ + 5 cos θ 16\cos^5 \theta -20\cos^3 \theta+5\cos\theta .

Therefore, we have c = 5 c=\boxed{5} .

nice application of DeMoivre's theorem @Sean Ty

Mardokay Mosazghi - 6 years, 5 months ago
Sanjeet Raria
Oct 9, 2014

cos 5 x = a cos 5 x + b cos 3 x + c cos x \large\cos 5x=a\cos^5 x+b\cos^3 x+c\cos x Differentiating both sides w.r.t x x , 5 sin 5 x = 5 a cos 4 x sin x 3 b cos 2 x sin x c sin x \large\Rightarrow -5\sin 5x=-5a \cos^4x•\sin x-3b\cos^2x•\sin x-c\sin x Here we observe that every terms of RHS has sin x with it except the last term containing c. \color{#3D99F6}{\text {every terms of RHS has sin x with it except the last term containing c.}} We can take advantage of this fact by, putting x = π 2 x=\frac{π}{2}

We finally get, 5 sin ( 5 π 2 ) = c ( h o w ) \large\Rightarrow -5 \sin(\frac{5π}{2})=-c(how) c = 5 \Large\Rightarrow c=\boxed5

awesome..i just learned something!

Arpit Jhamb - 6 years, 7 months ago

well it should be every term has cos x

Kaustubh Miglani - 5 years, 5 months ago

Log in to reply

Yes, you're right.There's that mistake.

Manasi Singh - 2 years, 8 months ago

C o s 5 X = C o s ( 4 X + X ) = C o s 4 X C o s X S i n 4 X S i n X = ( 2 C o s 2 2 X 1 ) C o s X 2 S i n 2 X C o s 2 x S i n X = ( 2 C o s 2 2 X 1 ) C o s X 4 S i n 2 X C o s X C o s 2 X = C o s X { 2 C o s 2 2 X 1 4 ( 1 C o s 2 X ) C o s 2 X } = C o s X { 2 ( 2 C o s 2 X 1 ) 2 1 4 ( 1 C o s 2 X ) ( 2 C o s 2 X 1 ) = C o s X { 2 ( 2 C o s 2 X 1 ) 2 1 4 ( 1 C o s 2 X ) ( 2 C o s 2 X 1 ) = C o s X { 2 ( 4 C o s 4 X 4 C o s 2 X + 1 ) 1 4 ( 1 + 3 C o s 2 X 2 C o s 4 X } = C o s X { 2 1 + 4 p l u s t e r m s c o n t a i n i n g C o s X } c = 5. Cos5X=Cos(4X+X)=Cos4X*CosX - Sin4X*SinX\\=(2Cos^22X-1)*CosX-2Sin2X*Cos2x*SinX\\=(2Cos^22X-1)*CosX-4Sin^2X*CosX*Cos2X~~~~~ ~~~ \\ =CosX\{2Cos^22X-1-4(1-Cos^2X)*Cos2X \} \\=CosX\{2(2Cos^2X -1)^2-1-4(1-Cos^2X)*(2Cos^2X -1)\\ =CosX\{2(2Cos^2X -1)^2-1-4(1-Cos^2X)*(2Cos^2X -1)\\ =CosX\{2(4Cos^4X - 4Cos^2X +1) -1-4( - 1+3Cos^2X - 2Cos^4X \}\\ =CosX\{2-1+4~ plus~ terms~ containing~ CosX\} ~~\implies ~c=5.

how i didnt understood>>>>>>>>>>>

MD Karishma - 5 years, 3 months ago

Log in to reply

Thanks for pointing out. I missed the last two lines. I have added them now.

Niranjan Khanderia - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...