Not Reduction Formula

Calculus Level 3

0 1 ln 10 x d x = ? \large \displaystyle \int_{0}^{1} \ln ^{10} x \ \mathrm dx = ?

Bonus: find the general form of 0 1 ln n x d x \int_0^1 \ln^n x \ \mathrm dx for positive integer n n .

403200 50400 362880 3628800

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kunal Gupta
Mar 15, 2015

Consider: I = 0 1 log n x d x I= \displaystyle \int_{0}^{1} \log^{n} xdx
Set log x = t \log x =t
So, I = 0 t n e t d t I =\displaystyle \int_{-\infty}^{0}t^{n}e^{t}dt

Also let t = p t=-p So, I = ( 1 ) n 0 p n e p d p I =(-1)^{n}\displaystyle \int_{0}^{\infty}p^{n}e^{-p}dp
Or, I = ( 1 ) n Γ ( n + 1 ) = ( 1 ) n n ! I= (-1)^{n} \Gamma(n+1) = (-1)^{n}n!
So, 0 1 log 10 x d x = 10 ! = 3628800 \boxed{\displaystyle \int_{0}^{1} \log^{10} xdx =10! =3628800}

Another similar approach could be, to consider the following integral -

I ( a ) = 0 1 x a d x = 1 a + 1 I(a) = \int_0^1 x^a\ \mathrm{d}x = \dfrac{1}{a+1}

Now, on differentiating the above expression with w.r.t to a a we get

I ( a ) = 0 1 x a ln x d x = 1 ( a + 1 ) 2 I^\prime(a) = \int_0^1 x^a\ \ln x\ \mathrm{d}x = \dfrac{-1}{(a+1)^2}

Similarly differentiating it again and again, we get

I ( n ) ( a ) = 0 1 x a ln n x d x = ( 1 ) n n ! ( a + 1 ) n + 1 I^{(n)}(a) = \int_0^1 x^a\ \ln^n x\ \mathrm{d}x = \dfrac{(-1)^n n!}{(a+1)^{n+1}}

Plugging a = 0 a=0 gives the result.

Kishlaya Jaiswal - 6 years, 2 months ago

Log in to reply

Richard Feynman was seriously a dude!!respect for him! And great work buddy!

Righved K - 5 years, 5 months ago

did the same...

Trishit Chandra - 6 years, 2 months ago
Danish Mohammed
Mar 25, 2015

Here's my solution

We are required to calculate I 10 = 0 1 ln 10 x d x \displaystyle I_{10} = \int_{0}^{1} \ln^{10} x dx

So let us first derive a general formula.

Consider I n = 0 1 ln n x d x \displaystyle I_{n} = \int_{0}^{1} \ln^{n} x dx .

Put x = e t x = e^t and d x = e t d t dx = e^t dt

Then we have I n = 0 t n e t d t = lim x x 0 t n e t d t \displaystyle I_{n} = \int_{-\infty}^{0} t^{n} e^t dt = \lim_{x \rightarrow -\infty} \int_{x}^{0} t^{n} e^t dt

Take M n = x 0 t n e t d t \displaystyle M_{n} = \int_{x}^{0} t^{n} e^t dt

Using integration by parts we obtain

M n = x n e x n M n 1 \displaystyle M_{n} = -x^n e^x - n M_{n-1}

Taking the limit of both sides as x x \rightarrow -\infty , we get

I n = 0 n I n 1 I n I n 1 = n \displaystyle I_{n} = 0 - n I_{n-1} \iff \frac{I_{n}}{I_{n-1}} = -n

So we also have

I n 1 I n 2 = ( n 1 ) \displaystyle \frac{I_{n-1}}{I_{n-2}} = -(n-1)

and so on till

I 1 I 0 = 1 \displaystyle \frac{I_{1}}{I_{0}} = -1

Multiplying all of these and observing that this is a telescoping product, we have I n I 0 = ( 1 ) n n ! \displaystyle \frac{I_{n}}{I_{0}} = (-1)^n n!

We have I 0 = 0 1 1 d x = 1 \displaystyle I_{0} = \int_{0}^{1} 1 dx = 1

Therefore I n = ( 1 ) n n ! \displaystyle I_{n} = (-1)^n n!

Finally I 10 = ( 1 ) 10 10 ! = 10 ! = 3628800 I_{10} = (-1)^{10} 10! = 10! = \boxed{3628800} is the answer

Yup that is the same thing we do for calculating the gamma value of n if n is an integer!good work!:D

Righved K - 5 years, 5 months ago
Andrea Palma
Mar 22, 2015

This exercise led me to calculate a formula for

ln n ( x ) d x \large \displaystyle \int \ln ^{n}( x) \ \mathrm dx

it is

ln n ( x ) d x = x k = 0 n ( 1 ) k n ! ( n k ) ! ln n k ( x ) + c \large \displaystyle \int \ln ^{n} (x) \ \mathrm dx = x \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!} \ln^{n-k}(x)\ \ + c

I used integration by parts and induction on n n to get it, but to prove it works you can simply derive it.

So

0 1 ln n ( x ) d x = \displaystyle \int_{0}^{1} \ln ^{n}( x) \ \mathrm dx = = k = 0 n ( 1 ) k n ! ( n k ) ! ln n k ( 1 ) lim x 0 + x k = 0 n ( 1 ) k n ! ( n k ) ! ln n k ( x ) = \displaystyle = \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!} \ln^{n-k}(1) - \lim_{x \mapsto 0^+} x \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!} \ln^{n-k}(x) = k = 0 n 1 ( 1 ) k n ! ( n k ) ! ln n k ( 1 ) + n ! k = 0 n ( 1 ) k n ! ( n k ) ! lim x 0 + x ln n k ( x ) = \displaystyle \sum_{k=0}^{n-1} (-1)^k \frac{n!}{(n-k)!} \ln^{n-k}(1) \ + n! - \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!} \lim_{x \mapsto 0^+} x\ln^{n-k}(x) = = k = 0 n 1 ( 1 ) k n ! ( n k ) ! 0 + n ! k = 0 n ( 1 ) k n ! ( n k ) ! 0 = n ! \displaystyle = \sum_{k=0}^{n-1} (-1)^k \frac{n!}{(n-k)!} \cdot 0 \ + n! - \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!} \cdot 0 = n! For n = 10 n = 10 we get our result

0 1 ln n ( x ) d x = 10 ! = 3628800 \large \displaystyle \int_{0}^{1} \ln ^{n}( x) \ \mathrm dx = 10! = 3628800

@Andrea Palma pretty nice workout indeed sir

Kunal Gupta - 6 years, 2 months ago

Log in to reply

Thanks Mister Gupta! Very nice of you! By the way my solution is just a mere integration by parts :) I greatly admire your sweet solution and Mister Jaiswal's solution!

Edit: and of course Mr Mohammed solution too! (just noticed)

Andrea Palma - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...