Oh no!

Calculus Level 5

π π ( arcsin sin x ) ( arcsin cos x ) ( arccos cos x ) ( arccos sin x ) d x \int _{ -\pi }^{ \pi }{ \left( \arcsin { \sin { x } } \right) } \left( \arcsin { \cos { x } } \right) \left( \arccos { \cos { x } } \right) \left( \arccos { \sin { x } } \right) \, dx

If the integral above can be expressed in the form π α β \dfrac { { \pi }^{ \alpha } }{ \beta } , where α { \alpha } and β { \beta } are positive integers, find β α \dfrac { \beta }{ \alpha } .


If you have not done it yet, try part 1 first.
This problem is original.


The answer is 48.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

So this is one of misconceptions on trigonometry. The range of arcsin \arcsin is [ π / 2 , π / 2 ] [-\pi/2,\pi/2] , and the range of arccos \arccos is [ 0 , π ] [0,\pi] . For example, arcsin ( sin x ) = x \arcsin(\sin x)=x if x [ π / 2 , π / 2 ] x \in [-\pi/2,\pi/2] . Otherwise, we need to derive something. For π / 2 x π -\pi/2 \le x \le \pi , we know that sin x = sin ( π x ) \sin x=\sin(\pi-x) , where π x [ π / 2 , π / 2 ] \pi-x \in [-\pi/2,\pi/2] . It means that for this case, arcsin ( sin x ) = π x \arcsin(\sin x)=\pi-x . Similarly, for π x π / 2 -\pi \le x \le -\pi/2 , we have arcsin ( sin x ) = π x \arcsin(\sin x)=-\pi-x . With the same trick, we have arccos ( cos x ) = x \arccos(\cos x)=x if x [ 0 , π ] x \in [0,\pi] , and arccos ( cos x ) = x \arccos(\cos x)=-x if x [ π , 0 ] x\in[-\pi,0] .

The hard parts are two other functions, arccos ( sin x ) \arccos(\sin x) and arcsin ( cos x ) \arcsin(\cos x) . For the first one, if π x π / 2 -\pi \le x \le -\pi/2 , we have sin x = cos ( π / 2 x ) = cos ( x π / 2 ) = cos ( x + 3 π / 2 ) \sin x=\cos(\pi/2-x)=\cos(x-\pi/2)=\cos(x+3\pi/2) , where x + 3 π / 2 [ π / 2 , π ] x+3\pi/2 \in [\pi/2,\pi] . So we have that arccos ( sin x ) = x + 3 π / 2 \arccos(\sin x)=x+3\pi/2 . I won't do for every interval, because it is kind of messy stuff. Here's a conclusion:

F u n c t i o n [ π , π / 2 ] [ π / 2 , 0 ] [ 0 , π / 2 ] [ π / 2 , π ] arcsin ( sin x ) x π x x x + π arccos ( cos c ) x x x x arcsin ( cos x ) x + π / 2 x + π / 2 x + π / 2 x + π / 2 arccos ( sin x ) x + 3 π / 2 x + π / 2 x + π / 2 x π / 2 \begin{matrix} {\rm Function} & [-\pi,-\pi/2] & [-\pi/2,0] & [0,\pi/2] & [\pi/2,\pi]\\ \arcsin(\sin x) & -x-\pi & x & x & -x+\pi\\ \arccos(\cos c) & -x & -x & x & x\\ \arcsin(\cos x) & x+\pi/2 & x+\pi/2 & -x+\pi/2 & -x+\pi/2\\ \arccos(\sin x) & x+3\pi/2 & -x+\pi/2 & -x+\pi/2 & x-\pi/2 \end{matrix}

If we denote the integrand function by F ( x ) F(x) , we get

F ( x ) = { x 4 + 3 π x 3 + 11 π 2 4 x 2 + 3 π 3 4 x π x < π 2 , x 4 π 2 4 x 2 π 2 x < 0 , x 4 π x 3 + π 2 4 x 2 0 x < π 2 , x 4 2 π x 3 + 5 π 2 4 x 2 π 3 4 x π 2 x π . F(x)=\begin{cases} x^4+3\pi x^3+\frac{11\pi^2}{4}x^2+\frac{3\pi^3}{4}x & -\pi \le x < -\frac{\pi}{2},\\ x^4-\frac{\pi^2}{4}x^2 & -\frac{\pi}{2} \le x < 0,\\ x^4-\pi x^3+\frac{\pi^2}{4}x^2 & 0 \le x < \frac{\pi}{2},\\ x^4-2\pi x^3+\frac{5\pi^2}{4}x^2-\frac{\pi^3}{4}x & \frac{\pi}{2} \le x \le \pi. \end{cases}

Integrate each parts and combine them, then the integral equals π 5 240 \frac{\pi^5}{240} . Thus the answer is 240 5 = 48 \frac{240}{5}=48 .

Good integration problem, Jonas! Really reinforces inverse trig relationships.

tom engelsman - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...