You'll like to calculate it!

Geometry Level 4

A circle, centre O O , has A B AB as a diameter. Let C C be a point on the circle different from A A and B B , D D be the point on A B AB such that C D B = 9 0 \angle CDB = 90^{\circ} and M M be the point on B C BC such that B M O = 9 0 \angle BMO = 90^{\circ} . D M DM is 3 × O M 3 \times OM . If A B C \angle ABC can be expressed as tan 1 ( a b ) \tan^{-1} (\frac{a}{b}) where a a and b b are co-prime positive integers, determine a + b a+b .


Inspiration .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Manish Mayank
Nov 4, 2015

We can see C M = B M CM = BM . Now, the midpoint of hypotenuse is equidistant from all the 3 vertices of a right triangle. So D M = B M = 3 O M DM = BM = 3OM t a n A B C = O M 3 O M = 1 3 \Rightarrow tan \angle ABC = \dfrac{OM}{3OM} = \dfrac{1}{3}

Great solution! +1

Arpon Paul - 5 years, 7 months ago

Log in to reply

Yours too :)

Manish Mayank - 5 years, 7 months ago

Good job!!!

Tarique Hasan - 5 years, 6 months ago
Arpon Paul
Nov 2, 2015

As O M B C OM \perp BC , so C M = B M , O C B = O B C CM=BM, \angle OCB =\angle OBC .

Let radius O C = O B = O A = r OC=OB=OA=r and A B C = θ \angle ABC=\theta . Then, A O C = 2 θ \angle AOC = 2\theta

Let's draw a line M N MN perpendicular to A B AB .

C D = r sin 2 θ , O D = r cos 2 θ , O M = r sin θ , D M = 3 r sin θ CD=r \sin 2\theta, ~OD=r \cos 2\theta, ~ OM=r \sin \theta, ~DM=3r \sin \theta .

As, B D C \triangle BDC and B N M \triangle BNM are similar triangles and B M = 1 2 B C BM=\frac{1}{2} BC , so M N = 1 2 C D = 1 2 r sin 2 θ = r sin θ cos θ \begin{aligned} MN &=\frac{1}{2}CD \\ &=\frac{1}{2}r \sin 2\theta \\ &=r \sin\theta \cos\theta \end{aligned}

Again, O N 2 = O M 2 M N 2 = r 2 sin 2 θ r 2 sin 2 θ cos 2 θ = r 2 sin 2 θ ( 1 cos 2 θ ) = r 2 sin 4 θ \begin{aligned} ON^2 &= OM^2 -MN^2 \\ &=r^2 \sin^2 \theta - r^2 \sin^2 \theta \cos ^2 \theta \\ &=r^2 \sin^2 \theta (1- \cos^2\theta) \\ &=r^2 \sin^4 \theta \end{aligned} Hence, O N = r sin 2 θ ON=r \sin^2 \theta

Again, D M 2 = D N 2 + M N 2 = ( r cos 2 θ + r sin 2 θ ) 2 + r 2 sin 2 θ cos 2 θ = r 2 ( 1 2 sin 2 θ + sin 2 θ ) 2 + r 2 sin 2 θ cos 2 θ = r 2 cos 4 θ + r 2 sin 2 θ cos 2 θ = r 2 c o s 2 θ ( c o s 2 θ + sin 2 θ ) = r 2 c o s 2 θ ( 3 r sin θ ) 2 = r 2 c o s 2 θ t a n 2 θ = 1 9 t a n θ = 1 3 \begin{aligned} DM^2 &=DN^2+MN^2\\ &= (r \cos 2\theta+r \sin ^2 \theta)^2+r^2 \sin ^2 \theta \cos ^2 \theta \\ &=r^2 (1-2\sin^2 \theta +\sin ^2 \theta)^2 +r^2 \sin ^2 \theta \cos ^2 \theta \\ &=r^2 \cos^4 \theta +r^2 \sin ^2 \theta \cos ^2 \theta \\ &=r^2 cos^2 \theta (cos^2 \theta +\sin ^2 \theta)\\ &=r^2 cos^2 \theta\\ (3r\sin \theta)^2 &=r^2 cos^2 \theta\\ tan^2 \theta &=\frac{1}{9}\\ tan \theta &= \frac{1}{3} \end{aligned}

The answer will be 1 + 3 = 4 1+3=4

Nicely accomplished!!!

Tarique Hasan - 5 years, 6 months ago
Ajit Athle
Nov 3, 2015

Let O be the origin and Q:(-a.b) and let the circle radius be R. Hence, B:(R,0), M:((R-a)/2,b/2) and D:(-a,0). We then have the following two equations: a²+b²=R² & 9OM²=DM² or(1/4)((R+a)²+b²)= (9/4)((R-a)²+b²). These can be easily solved to give, a=4R/5 & b=3R/5. Now tan(θ) = b/(a+R) =(3R/5)/((4R/5)+R)=1/3. Hence a+b=4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...