Your idea matters-2

Algebra Level 1

4 ( ( 1 2 ) ! ) 2 = ? \large 4\left(\left(\frac 12\right)! \right)^2=?


The answer is 3.14159265358979323846264338.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

4 ( ( 1 2 ) ! ) 2 = 4 ( Γ ( 3 2 ) ) 2 n ! = Γ ( n + 1 ) , where Γ ( ) denotes the gamma function. = 4 ( 1 2 Γ ( 1 2 ) ) 2 Note that Γ ( 1 + s ) = s Γ ( s ) = 4 ( π 2 ) 2 and Γ ( 1 2 ) = π = π 3.14 \begin{aligned} 4\left(\left(\frac 12\right)! \right)^2 & = 4\left(\Gamma\left(\frac 32\right) \right)^2 & \small \blue{n! = \Gamma (n+1) \text{, where }\Gamma (\cdot) \text{ denotes the gamma function.}} \\ & = 4\left(\frac 12 \Gamma\left(\frac 12\right) \right)^2 & \small \blue{\text{Note that } \Gamma (1+s) = s\Gamma(s)} \\ & = 4\left(\frac {\sqrt \pi}2 \right)^2 & \small \blue{\text{and } \Gamma \left( \frac 12 \right) = \sqrt \pi} \\ & = \pi \approx \boxed{3.14} \end{aligned}


Reference: Gamma function

Hi Bye
Oct 7, 2019

4 × ( ( 1 2 ) ! ) 2 = 4 × ( π 2 ) 2 = π . 4\times \left(\left(\frac 12\right)!\right)^2=4\times \left(\frac{\sqrt{\pi}}{2}\right)^2=\boxed{\pi}.

why is (1/2)!= π \sqrtπ /2?

Fahim Muhtamim - 1 year, 8 months ago

It requires calculus.

hi bye - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...