You're floored! again !

Algebra Level 5

Find the units digit of the no. 1 0 20000 1 0 100 + 3 \huge\lfloor \frac{10^{20000}}{10^{100}+3} \rfloor . Try this first You're floored


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mas Mus
Apr 29, 2015

1 0 20000 1 0 100 + 3 = ( 1 0 19900 3 × 1 0 19800 + 9 × 1 0 19700 + + 3 198 × 1 0 100 3 199 ) + 3 200 1 0 100 + 3 \dfrac{10^{20000}}{10^{100}+3}\\=\left(10^{19900}-3\times{10^{19800}}+9\times{10^{19700}}+\ldots+3^{198}\times{10^{100}}-3^{199}\right)+\dfrac{3^{200}}{10^{100}+3} .

Now, look at the last term, since 3 200 = 9 100 < 1 0 100 + 3 ~~~3^{200}=9^{100}<10^{100}+3 , then 3 200 1 0 100 + 3 = 0 \lfloor{\dfrac{3^{200}}{10^{100}+3}}\rfloor=0 . So,

1 0 20000 1 0 100 + 3 = ( 1 0 19900 3 × 1 0 19800 + 9 × 1 0 19700 + + 3 198 × 1 0 100 ) 3 199 \lfloor{\dfrac{10^{20000}}{10^{100}+3}}\rfloor=\left(10^{19900}-3\times{10^{19800}}+9\times{10^{19700}}+\ldots+3^{198}\times{10^{100}}\right)-3^{199} .

It's clear that the unit digit of all of numbers in the bracket is 0 0 , so that the unit digit

of 1 0 20000 1 0 100 + 3 \lfloor{\dfrac{10^{20000}}{10^{100}+3}}\rfloor is equivalent to the unit digit of ( 3 199 ) \left(-3^{199}\right)

Now, we shall work with modulo 10 10 to determine the unit digit of ( 3 199 ) \left(-3^{199}\right) .

( 3 199 ) ( 1 ) ( 9 ) 99 × 3 ( 1 ) ( 1 ) 99 × 3 3 ( m o d 10 ) \left(-3^{199}\right)\equiv(-1)\left(9\right)^{99}\times{3}\equiv(-1)\left(-1\right)^{99}\times{3}\equiv3\pmod{10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...