Find the sum of the digits at unit and tens place of the number ⌊ 1 0 3 1 + 3 1 0 9 3 ⌋ where ⌊ x ⌋ denotes the greatest integer less than or equal to x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1 0 3 1 + 3 1 0 9 3 = 1 0 6 2 − 3 × 1 0 3 1 + 8 + 1 0 3 1 + 3 1 0 3 1 − 2 4 = 1 0 6 2 − 3 × 1 0 3 1 + 9 − 1 0 3 1 + 3 2 7
Since ⌊ 1 0 3 1 + 3 1 0 3 1 − 2 4 ⌋ = 0 , then ⌊ 1 0 3 1 + 3 1 0 9 3 ⌋ = 1 0 6 2 − 3 × 1 0 3 1 + 8 .
Both 1 0 6 2 and ( − 3 × 1 0 3 1 ) has ten and unit digit 0 , so the unit digit of
⌊ 1 0 3 1 + 3 1 0 9 3 ⌋ = 8
Hence, the answer is 0 + 8 = 8
Problem Loading...
Note Loading...
Set Loading...
1 0 3 1 + 3 1 0 9 3 = 1 0 3 1 + 3 ( 1 0 3 1 + 3 ) 3 − 3 ( 3 ) 1 0 6 2 − 3 ( 3 2 ) 1 0 3 1 − 3 3 = 1 0 3 1 + 3 ( 1 0 3 1 + 3 ) 3 − 9 ( 1 0 3 1 ) ( 1 0 3 1 + 3 ) − 2 7 = ( 1 0 3 1 + 3 ) 2 − 9 ( 1 0 3 1 ) − 1 0 3 1 + 3 2 7 = 1 0 6 2 + 6 ( 1 0 3 1 ) + 9 − 9 ( 1 0 3 1 ) − 1 0 3 1 + 3 2 7 = 1 0 6 2 − 3 ( 1 0 3 1 ) + 9 − 1 0 3 1 + 3 2 7 = 1 0 6 2 − 3 ( 1 0 3 1 ) + 8 + 1 0 3 1 + 3 1 0 3 1 − 2 4
⇒ ⌊ 1 0 3 1 + 3 1 0 9 3 ⌋ = 1 0 6 2 − 3 ( 1 0 3 1 ) + 8 = ( 1 0 3 1 − 3 ) 1 0 3 1 + 8 = 9 9 9 9 9 . . . 9 9 7 0 0 . . . 0 0 0 0 8
⇒ The sum of the units and tens digits = 0 + 8 = 8