You're floored !

Algebra Level 5

Find the sum of the digits at unit and tens place of the number 1 0 93 1 0 31 + 3 \large \left \lfloor \frac{10^{93}}{10^{31}+3} \right \rfloor where x \lfloor x \rfloor denotes the greatest integer less than or equal to x x .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 15, 2015

1 0 93 1 0 31 + 3 = ( 1 0 31 + 3 ) 3 3 ( 3 ) 1 0 62 3 ( 3 2 ) 1 0 31 3 3 1 0 31 + 3 = ( 1 0 31 + 3 ) 3 9 ( 1 0 31 ) ( 1 0 31 + 3 ) 27 1 0 31 + 3 = ( 1 0 31 + 3 ) 2 9 ( 1 0 31 ) 27 1 0 31 + 3 = 1 0 62 + 6 ( 1 0 31 ) + 9 9 ( 1 0 31 ) 27 1 0 31 + 3 = 1 0 62 3 ( 1 0 31 ) + 9 27 1 0 31 + 3 = 1 0 62 3 ( 1 0 31 ) + 8 + 1 0 31 24 1 0 31 + 3 \begin{aligned} \dfrac {10^{93}}{10^{31}+3} & = \dfrac {(10^{31}+3)^3-3(3)10^{62}-3(3^2)10^{31}-3^3}{10^{31}+3} \\ & = \dfrac {(10^{31}+3)^3-9(10^{31})(10^{31}+3)-27}{10^{31}+3} \\ & = (10^{31}+3)^2 - 9(10^{31}) - \dfrac {27}{10^{31}+3} \\ & = 10^{62}+6(10^{31}) + 9 - 9(10^{31}) - \dfrac {27}{10^{31}+3} \\ & = 10^{62}-3(10^{31}) + 9 - \dfrac {27}{10^{31}+3} \\ & = 10^{62}-3(10^{31}) + 8 + \dfrac {10^{31} - 24}{10^{31}+3} \end{aligned}

1 0 93 1 0 31 + 3 = 1 0 62 3 ( 1 0 31 ) + 8 = ( 1 0 31 3 ) 1 0 31 + 8 = 99999...99700...00008 \begin{aligned} \Rightarrow \left \lfloor \dfrac {10^{93}}{10^{31}+3} \right \rfloor & = 10^{62}-3(10^{31}) + 8 = (10^{31} - 3)10^{31} + 8 \\ & = 99999...99700...00008 \end{aligned}

\Rightarrow The sum of the units and tens digits = 0 + 8 = 8 = 0+8= \boxed{8}

Mas Mus
Apr 29, 2015

10 93 10 31 + 3 = 10 62 3 × 10 31 + 9 27 10 31 + 3 = 10 62 3 × 10 31 + 8 + 10 31 24 10 31 + 3 \begin{array}{c}&\dfrac{{10}^{93}}{{10}^{31}+3}&={10}^{62}-3\times{{10}^{31}}+9-\dfrac{27}{{10}^{31}+3}\\&={10}^{62}-3\times{{10}^{31}}+8+\dfrac{{10}^{31}-24}{{10}^{31}+3}\end{array}

Since 10 31 24 10 31 + 3 = 0 ~~\lfloor\dfrac{{10}^{31}-24}{{10}^{31}+3}\rfloor=0 , then 10 93 10 31 + 3 = 10 62 3 × 10 31 + 8 ~~\lfloor\dfrac{{10}^{93}}{{10}^{31}+3}\rfloor={10}^{62}-3\times{{10}^{31}}+8 .

Both 10 62 {10}^{62}~ and ( 3 × 10 31 ) \left(-3\times{{10}^{31}}\right) has ten and unit digit 0 0 , so the unit digit of

10 93 10 31 + 3 = 8 \lfloor\dfrac{{10}^{93}}{{10}^{31}+3}\rfloor=8

Hence, the answer is 0 + 8 = 8 0+8=8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...