∫ 0 2 π sin 2 5 6 ( x ) d x = B ! ! A ! ! 2 π ,
where A and B are the lowest possible natural numbers. Find A + B .
n ! ! denotes the double factorial of the number n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Recall the reduction formula : ∫ sin n x d x = − n 1 sin n − 1 x cos x + n n − 1 ∫ sin n − 2 x d x
∫ 0 2 π sin 2 5 6 x d x = [ − 2 5 6 1 sin 2 5 5 x cos x ] 0 2 π + 2 5 6 2 5 5 ∫ 0 2 π sin 2 5 4 x d x = 0 + 2 5 6 2 5 5 ( [ − 2 5 4 1 sin 2 5 3 x cos x ] 0 2 π + 2 5 3 2 5 4 ∫ 0 2 π sin 2 5 2 x d x ) = 2 5 6 2 5 5 ( 0 + 2 5 3 2 5 4 ( [ − 2 5 2 1 sin 2 5 1 x cos x ] 0 2 π + 2 5 1 2 5 2 ∫ 0 2 π sin 2 5 0 x d x ) ) = 2 5 6 2 5 5 ⋅ 2 5 4 2 5 3 ⋅ 2 5 2 2 5 1 ⋯ 2 1 ∫ 0 2 π sin 0 x d x = 2 5 6 ! ! 2 5 5 ! ! 2 π ∴ A + B = 2 5 5 + 2 5 6 = 5 1 1
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 2 π sin 2 5 6 x d x = ∫ 0 2 π sin 2 5 6 x cos 0 x d x = 2 B ( 2 2 5 7 , 2 1 ) = 2 Γ ( 1 2 9 ) Γ ( 2 2 5 7 ) Γ ( 2 1 ) = 2 × 1 2 8 ! 1 2 8 2 2 5 5 ! ! π × π = 2 ( 2 5 6 ! ! ) 2 5 5 ! ! π Beta function B ( m , n ) = 2 ∫ 0 2 π sin 2 m − 1 x cos 2 n − 1 x d x and B ( m , n ) = Γ ( m + n ) Γ ( m ) Γ ( n ) , where Γ ( ⋅ ) denotes the gamma function. Note that Γ ( 2 1 ) = π , Γ ( 1 + x ) = x Γ ( x ) , Γ ( n ) = ( n − 1 ) ! and that 2 n n ! = ( 2 n ) ! !
Therefore, A + B = 2 5 5 + 2 5 6 = 5 1 1 .
References: