You're integrating me

Calculus Level 3

0 π 2 sin 256 ( x ) d x = A ! ! B ! ! π 2 , \int_0^{\frac{\pi}{2}} \sin^{256}(x) dx = \frac{A!!}{B!!} \frac{\pi}{2},

where A A and B B are the lowest possible natural numbers. Find A + B A + B .


n ! ! n!! denotes the double factorial of the number n n .


The answer is 511.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 18, 2019

I = 0 π 2 sin 256 x d x = 0 π 2 sin 256 x cos 0 x d x Beta function B ( m , n ) = 2 0 π 2 sin 2 m 1 x cos 2 n 1 x d x = B ( 257 2 , 1 2 ) 2 and B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) , where Γ ( ) denotes the gamma function. = Γ ( 257 2 ) Γ ( 1 2 ) 2 Γ ( 129 ) Note that Γ ( 1 2 ) = π , Γ ( 1 + x ) = x Γ ( x ) , Γ ( n ) = ( n 1 ) ! = 255 ! ! 12 8 2 π × π 2 × 128 ! and that 2 n n ! = ( 2 n ) ! ! = 255 ! ! π 2 ( 256 ! ! ) \begin{aligned} I & = \int_0^\frac \pi 2 \sin^{256} x\ dx \\ & = \int_0^\frac \pi 2 \sin^{256} x \cos^0 x\ dx & \small \color{#3D99F6} \text{Beta function B}(m,n) = 2\int_0^\frac \pi 2 \sin^{2m-1}x \cos^{2n-1} x\ dx \\ & = \frac {\text B\left(\frac {257}2, \frac 12\right)}2 & \small \color{#3D99F6} \text{and B}(m,n) = \frac {\Gamma(m)\Gamma(n)}{\Gamma(m+n)} \text{, where }\Gamma (\cdot) \text{ denotes the gamma function.} \\ & = \frac {\Gamma \left(\frac {257}2 \right)\Gamma \left(\frac 12 \right)}{2\Gamma (129)} & \small \color{#3D99F6} \text{Note that }\Gamma \left(\frac 12 \right) = \sqrt \pi, \Gamma (1+x) = x\Gamma (x), \Gamma (n) = (n-1)! \\ & = \frac {\frac {255!!}{128^2} \sqrt \pi \times \sqrt \pi}{2\times 128!} & \small \color{#3D99F6} \text{and that }2^n n! = (2n)!! \\ & = \frac {255!! \pi}{2(256!!)} \end{aligned}

Therefore, A + B = 255 + 256 = 511 A+B = 255+256 = \boxed{511} .


References:

Tommy Li
Jul 17, 2019

Recall the reduction formula : sin n x d x = 1 n sin n 1 x cos x + n 1 n sin n 2 x d x \displaystyle \large \int \sin^{n}{x}dx = -\frac{1}{n}\sin^{n-1}{x}\cos{x}+\frac{n-1}{n}\int\sin^{n-2}{x} dx

0 π 2 sin 256 x d x = [ 1 256 sin 255 x cos x ] 0 π 2 + 255 256 0 π 2 sin 254 x d x = 0 + 255 256 ( [ 1 254 sin 253 x cos x ] 0 π 2 + 254 253 0 π 2 sin 252 x d x ) = 255 256 ( 0 + 254 253 ( [ 1 252 sin 251 x cos x ] 0 π 2 + 252 251 0 π 2 sin 250 x d x ) ) = 255 256 253 254 251 252 1 2 0 π 2 sin 0 x d x = 255 ! ! 256 ! ! π 2 A + B = 255 + 256 = 511 \large\displaystyle\int_{0}^{\frac{\pi}{2}} \sin^{256}{x} dx = [-\frac{1}{256}\sin^{255}{x}\cos{x}]_{0}^{\frac{\pi}{2}}+\frac{255}{256}\int_{0}^{\frac{\pi}{2}} \sin^{254}{x} dx \\ = 0 + \frac{255}{256} \left( [-\frac{1}{254}\sin^{253}{x}\cos{x}]_{0}^{\frac{\pi}{2}}+\frac{254}{253}\int_{0}^{\frac{\pi}{2}} \sin^{252}{x} dx \right) \\= \frac{255}{256} \left( 0 +\frac{254}{253}\left( [-\frac{1}{252}\sin^{251}{x}\cos{x}]_{0}^{\frac{\pi}{2}}+\frac{252}{251}\int_{0}^{\frac{\pi}{2}} \sin^{250}{x} dx \right)\right) \\= \frac{255}{256}\cdot\frac{253}{254}\cdot\frac{251}{252}\cdots\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\sin^{0}{x} dx \\= \frac{255!!}{256!!}\frac{\pi}{2} \\ \therefore A+B=255+256 = 511

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...