You're Just My X

Geometry Level 3

Find the value of x x between 0 and 180 such that

tan ( 120 x ) = sin 120 sin x cos 120 cos x . \tan({ 120 }^{ \circ }-x^{ \circ })=\frac { \sin{ 120 }^{ \circ }-\sin x^{ \circ } }{ \cos{ 120 }^{ \circ }-\cos x^{ \circ }}.

100 No such x x 110 90

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

John Aries Sarza
May 24, 2014

t a n ( 120 o x ) = 2 c o s 120 o + x 2 s i n 120 o x 2 2 s i n 120 o + x 2 s i n 120 o x 2 = c o t 120 o + x 2 = t a n ( 90 o 120 o + x 2 ) = t a n ( x 6 0 o 2 ) tan({ 120 }^{ o }-x)=\quad \frac { 2cos\frac { { 120 }^{ o }+x }{ 2 } sin\frac { { 120 }^{ o }-x }{ 2 } }{ -2sin\frac { { 120 }^{ o }+x }{ 2 } sin\frac { { 120 }^{ o }-x }{ 2 } } =\quad -cot\frac { { 120 }^{ o }+x }{ 2 } \\ \quad \quad \quad \quad \quad =\quad -tan({ 90 }^{ o }-\frac { { 120 }^{ o }+x }{ 2 } )=\quad tan(\frac { x-60^{ o } }{ 2 } ) t a n ( 120 o x ) = t a n ( x 6 0 o 2 ) tan({ 120 }^{ o }-x)=\quad tan(\frac { x-60^{ o } }{ 2 } ) 120 o x = x 6 0 o 2 x = 100 0 { 120 }^{ o }-x=\quad \frac { x-60^{ o } }{ 2 } \\ \boxed{x={ 100 }^{ 0 }}\\

Done same way nice solution

Mardokay Mosazghi - 7 years ago

wow..didnt even thought of that.

pranav jangir - 7 years ago

Nice solution, but please tell me only one thing. How did c o t 120 ° + x 2 -cot\frac { 120°+x }{ 2 } become t a n ( 90 ° 120 ° + x 2 ) -tan(90°-\frac { 120°+x }{ 2 } ) ? Any formula?

Arsalan Iqbal - 7 years ago

Log in to reply

If we have a right triangle ABC at c=90, c o t A = t a n B = t a n ( 90 A ) cot\quad A=\quad tan\quad B\quad =tan(90-A)

John Aries Sarza - 7 years ago
Arpan Mathur
Feb 7, 2017

120 is another answer for x.

As the denominator can't be zero, 120 isn't in the domain.

Fatemeh Jafari - 3 years ago

Log in to reply

The question must have been edited before your comment.

Arpan Mathur - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...