Yummy

Algebra Level 4

1 1 × 7 + 1 4 × 10 + 1 7 × 13 + 1 10 × 16 + 1 13 × 19 + 1 16 × 22 + = A B \dfrac{1}{1 \times 7}+\dfrac{1}{4 \times 10}+\dfrac{1}{7 \times 13}+\dfrac{1}{10 \times 16}+\dfrac{1}{13 \times 19}+\dfrac{1}{16 \times 22}+\cdots =\dfrac{A}{B}

Find A + B A+B where A A and B B are coprime positive integers.


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Nov 24, 2015

1 7 + 1 40 + 1 91 + 1 160 + = 1 1 × 7 + 1 4 × 10 + 1 7 × 13 + 1 10 × 16 + \displaystyle \frac{1}{7}+\frac{1}{40}+\frac{1}{91}+\frac{1}{160}+\ldots = \frac{1}{1\times 7}+\frac{1}{4\times 10}+\frac{1}{7\times 13}+\frac{1}{10\times 16}+\ldots

We know 1 n ( n + 6 ) = 1 6 ( 1 n 1 n + 6 ) \displaystyle \frac{1}{n(n+6)}=\frac{1}{6}\left(\frac{1}{n}-\frac{1}{n+6}\right) by partial fractions.

1 6 ( 1 1 7 ) + 1 6 ( 1 4 1 10 ) + 1 6 ( 1 7 1 13 ) + \displaystyle \frac{1}{6}\left(1-\frac{1}{7}\right)+\frac{1}{6}\left(\frac{1}{4}-\frac{1}{10}\right)+\frac{1}{6}\left(\frac{1}{7}-\frac{1}{13}\right)+\ldots

1 6 ( 1 1 7 + 1 4 1 10 + 1 7 1 13 + ) \displaystyle \frac{1}{6}\left(1-\cancel{\frac{1}{7}}+\frac{1}{4}-\cancel{\frac{1}{10}}+\cancel{\frac{1}{7}}-\cancel{\frac{1}{13}}+\ldots \right)

1 6 ( 1 + 1 4 ) = 5 24 \displaystyle \frac{1}{6}\left(1+\frac{1}{4}\right)=\frac{5}{24}

A + B = 29 A+B=\boxed{29}

Moderator note:

Slight typo in the third line ( = = instead of + + ), but otherwise this is good.

Generally, people do not say " + + \ldots \infty ", but just " + + \ldots " to indicate a sum to infinity.

In the question, can you clarify what the sequence of terms are?

Calvin Lin Staff - 5 years, 6 months ago

I've lightly edited and beautified your solution so other solvers can more easily absorb it :) As the Challenge Master has said, it is best not to attach \infty to the end of an indefinite sum.

Jake Lai - 5 years, 6 months ago
Nowras Otmen
Dec 3, 2015

I had a similar solution, just used a different sequence:

i = 0 1 ( 3 i + 1 ) ( 3 i + 7 ) = i = 0 1 6 ( 1 3 i + 1 1 3 i + 7 ) \displaystyle\sum_{i=0}^\infty \dfrac {1}{(3i+1)(3i+7)}=\displaystyle\sum_{i=0}^\infty \dfrac{1}{6}\left( \dfrac{1}{3i+1}-\dfrac{1}{3i+7}\right) by partial fractions; i = 0 1 6 ( 1 3 i + 1 1 3 i + 7 ) = 1 6 ( 1 1 7 + 1 4 1 10 + 1 7 1 13 + 1 10 1 16 + 1 13 1 19 + . . . ) \displaystyle\sum_{i=0}^\infty \dfrac{1}{6}\left( \dfrac{1}{3i+1}-\dfrac{1}{3i+7}\right)=\dfrac{1}{6}\left(1-\dfrac{1}{7}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{10}-\dfrac{1}{16}+\dfrac{1}{13}-\dfrac{1}{19}+...\right)

After cancelling out the terms, we are left with:

i = 0 1 6 ( 1 3 i + 1 1 3 i + 7 ) = 1 6 ( 1 + 1 4 ) \displaystyle\sum_{i=0}^\infty \dfrac{1}{6}\left( \dfrac{1}{3i+1}-\dfrac{1}{3i+7}\right)=\dfrac{1}{6}\left(1+\dfrac{1}{4}\right)

i = 0 1 6 ( 1 3 i + 1 1 3 i + 7 ) = 5 24 \displaystyle\sum_{i=0}^\infty \dfrac{1}{6}\left( \dfrac{1}{3i+1}-\dfrac{1}{3i+7}\right)=\dfrac{5}{24}

5 24 = A B \dfrac{5}{24}=\dfrac{A}{B}

A + B = 5 + 24 = 29 \therefore A+B=5+24=29

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...