\dddot y − 2 y ¨ − 5 y ˙ + 6 y = 0
If the above differential equation has the general solution of the form y = a 1 e a t + a 2 e b t + a 3 e c t , where a 1 , a 2 and a 3 are real constants, and a , b and c are integers, find a + b + c .
Notations: y ˙ = d t d y , y ¨ = d t 2 d 2 y , \dddot y = d t 3 d 3 y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
a + b + c is the sum of the roots which can be directly concluded to be 2 .
did not understand.......
Problem Loading...
Note Loading...
Set Loading...
T h e g i v e n D E i s a H o m o g e n e o u s L D E . T h e c h a r a c t e r i s t i c e q u a t i o n i s λ 3 − 2 λ 2 − 5 λ + 6 = 0 w h i c h h a s a r o o t f o r λ = 1 . N o w , t h e e q u a t i o n c a n b e f a c t o r i s e d t o ( λ − 1 ) ( λ + 2 ) ( λ − 3 ) = 0 . S o , t h e c h a r a c t e r i s t i c r o o t s a r e 1 , − 2 , 3 a n d t h e g e n e r a l s o l u t i o n i s a 1 e 1 t + a 2 e − 2 t + a 3 e 3 t . ∴ a + b + c = 2