Yup, still doing DE!

Calculus Level 4

\dddot y 2 y ¨ 5 y ˙ + 6 y = 0 \large \dddot y - 2 \ddot y - 5 \dot y +6y=0

If the above differential equation has the general solution of the form y = a 1 e a t + a 2 e b t + a 3 e c t y = { a }_{ 1 }{ e }^{ at }+{ a }_{ 2 }{ e }^{ bt }+{ a }_{ 3 }{ e }^{ ct } , where a 1 a_1 , a 2 a_2 and a 3 a_3 are real constants, and a a , b b and c c are integers, find a + b + c a+b+c .

Notations: y ˙ = d y d t \dot y =\dfrac { dy }{ dt } , y ¨ = d 2 y d t 2 \ddot y =\dfrac { { d }^{ 2 }y }{ d{ t }^{ 2 } } , \dddot y = d 3 y d t 3 \dddot y =\dfrac { { d }^{ 3 }y }{ d{ t }^{ 3 } } .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu C
Apr 2, 2015

T h e g i v e n D E i s a H o m o g e n e o u s L D E . T h e c h a r a c t e r i s t i c e q u a t i o n i s λ 3 2 λ 2 5 λ + 6 = 0 w h i c h h a s a r o o t f o r λ = 1. N o w , t h e e q u a t i o n c a n b e f a c t o r i s e d t o ( λ 1 ) ( λ + 2 ) ( λ 3 ) = 0. S o , t h e c h a r a c t e r i s t i c r o o t s a r e 1 , 2 , 3 a n d t h e g e n e r a l s o l u t i o n i s a 1 e 1 t + a 2 e 2 t + a 3 e 3 t . a + b + c = 2 The\quad given\quad DE\quad is\quad a\quad Homogeneous\quad LDE.\\ \\ The\quad characteristic\quad equation\quad is\\ { \lambda }^{ 3 }-2{ \lambda }^{ 2 }-5\lambda +6=0\quad which\quad has\quad a\quad root\quad for\\ \lambda =1.\quad Now,\quad the\quad equation\quad can\quad be\quad factorised\\ to\quad \\ (\lambda -1)(\lambda +2)(\lambda -3)=0.\\ So,\quad the\quad characteristic\quad roots\quad are\quad 1,\quad -2,\quad 3\quad and\\ the\quad general\quad solution\quad is\quad { a }_{ 1 }{ e }^{ 1t }{ +a }_{ 2 }{ e }^{ -2t }{ +a }_{ 3 }{ e }^{ 3t }.\\ \therefore \quad a+b+c=\boxed { 2 }

a + b + c a+b+ c is the sum of the roots which can be directly concluded to be 2 2 .

Sudeep Salgia - 6 years, 2 months ago

did not understand.......

rajat kharbanda - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...