y y y 3 = ( y y 3 ) y y^{y\sqrt[3]y} = (y\sqrt[3]y)^y

Algebra Level 2

y y y 3 = ( y y 3 ) y \large y^{y\sqrt[3]y} = (y\sqrt[3]y)^y

The sum of all possible values of y y is in a form of a b \dfrac ab , where gcd ( a , b ) = 1 \gcd(a,b) =1 . Find a + b a + b .


The answer is 118.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 29, 2018

y y y 3 = ( y y 3 ) y y y 4 3 = y 4 3 y Taking log on both sides y 4 3 ln y = 4 3 y ln y y 4 3 ln y 4 3 y ln y = 0 y ( y 1 3 4 3 ) ln y = 0 \begin{aligned} y^{y\sqrt[3]y} & = (y\sqrt[3]y)^y \\ y^{y^\frac 43} & = y^{\frac 43y} & \small \color{#3D99F6} \text{Taking log on both sides} \\ y^\frac 43 \ln y & = \frac 43 y \ln y \\ y^\frac 43 \ln y - \frac 43 y \ln y & = 0 \\ y \left(y^\frac 13 - \frac 43\right) \ln y & = 0 \end{aligned}

y = { y = 0 Rejected as 0 0 is not defined. y 1 3 4 3 = 0 y = 64 27 ln y = 0 y = 1 \implies y = \begin{cases} y = 0 & \small \color{#D61F06} \text{Rejected as }0^0 \text{ is not defined.} \\ y^\frac 13 - \dfrac 43 = 0 & \implies y = \dfrac {64}{27} \\ \ln y = 0 & \implies y = 1 \end{cases}

Therefore, the sum of all possible values of y y is 64 27 + 1 = 91 27 \dfrac {64}{27}+1 = \dfrac {91}{27} and a + b = 91 + 27 = 118 a+b = 91 + 27 = \boxed{118} .

Munem Shahriar
Aug 28, 2018

y y y 3 = ( y y 3 ) y ( y y ) y 3 = ( y y 1 3 ) y ( y y ) y 3 = ( y 4 3 ) y ( y y ) y 3 = ( y y ) 4 3 y 3 = 4 3 y = 64 27 \large \begin{aligned} y^{y\sqrt[3]y} & = (y\sqrt[3]y)^y \\ \Rightarrow (y^y)^{\sqrt[3]y} & = (y \cdot y^{\frac 13})^y \\ \Rightarrow (y^y)^{\sqrt[3]y} & = (y^{\frac 43})^y \\ \Rightarrow (y^y)^{\sqrt[3]y} & = (y^y)^{\frac 43} \\ \Rightarrow \sqrt[3]y & = \dfrac 43 \\ \implies y & = \dfrac{64}{27} \\ \end{aligned}

Since 1 n = 1 1^n = 1 for any number n , n, the other solution must be y = 1 y = 1 . So a b = 64 27 + 1 = 91 27 \dfrac ab = \dfrac{64}{27} +1 = \dfrac{91}{27} . Hence a + b = 91 + 27 = 118 a + b = 91 + 27 = \boxed{118}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...