y y 3 y = ( y 3 y ) y
The sum of all possible values of y is in a form of b a , where g cd ( a , b ) = 1 . Find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
y y 3 y ⇒ ( y y ) 3 y ⇒ ( y y ) 3 y ⇒ ( y y ) 3 y ⇒ 3 y ⟹ y = ( y 3 y ) y = ( y ⋅ y 3 1 ) y = ( y 3 4 ) y = ( y y ) 3 4 = 3 4 = 2 7 6 4
Since 1 n = 1 for any number n , the other solution must be y = 1 . So b a = 2 7 6 4 + 1 = 2 7 9 1 . Hence a + b = 9 1 + 2 7 = 1 1 8
Problem Loading...
Note Loading...
Set Loading...
y y 3 y y y 3 4 y 3 4 ln y y 3 4 ln y − 3 4 y ln y y ( y 3 1 − 3 4 ) ln y = ( y 3 y ) y = y 3 4 y = 3 4 y ln y = 0 = 0 Taking log on both sides
⟹ y = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ y = 0 y 3 1 − 3 4 = 0 ln y = 0 Rejected as 0 0 is not defined. ⟹ y = 2 7 6 4 ⟹ y = 1
Therefore, the sum of all possible values of y is 2 7 6 4 + 1 = 2 7 9 1 and a + b = 9 1 + 2 7 = 1 1 8 .