14 and 7 won't let you make it easy #RMM(0)

Geometry Level 2

csc ( π 14 ) 4 cos ( 2 π 7 ) = ? \large \csc\left(\dfrac{\pi}{14} \right)-4\cos\left(\dfrac{2\pi}{7}\right) = ?

Note: Do not use a calculator.

Source: This is the problem proposed by Vasile Mircea Popa in Romanian Mathematical Magazine.

For more problems you may wish to visit my set RMM .

3 1 4 2 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Sep 13, 2018

My approach A complete trigonometrical approach

We have ζ = csc π 14 4 cos 2 π 7 \zeta = \csc \dfrac{\pi}{14}-4\cos \dfrac{2\pi}{7} Note that csc π 14 = sin ( π 14 ) 1 \csc \dfrac{\pi}{14}= \sin \left( \dfrac{\pi}{14}\right)^{-1} also notice that sin π 14 = cos 3 π 7 \sin \dfrac{\pi}{14} = \cos \dfrac{3\pi}{7} Thus, above expression can be expressed as ζ = 1 sin π 14 4 cos 2 π 7 = 1 cos 2 π 7 ( 1 4 cos 2 π 7 cos 3 π 7 ) \begin{aligned} \zeta & = \dfrac{1}{\sin \dfrac{\pi}{14}} -4\cos \dfrac{2\pi}{7}\\& =\dfrac{1}{\cos \dfrac{2\pi}{7}}\left(1 -4\cos \dfrac{2\pi}{7}\cdot \cos\dfrac{3\pi}{7}\right)\end{aligned} Recall that cos π 7 cos 2 π 7 cos 3 π 7 = 1 8 \cos\dfrac{\pi}{7}\cdot \cos\dfrac{2\pi}{7}\cdot \cos\dfrac{3\pi}{7}=\dfrac{1}{8} Plugging back the above expression we have ζ = 4 cos 2 π 7 ( 2 cos π 7 1 ) = 4 2 = 2 \begin{aligned} \zeta & = 4\cos\dfrac{2\pi}{7}\left(2\cos\dfrac{\pi}{7} -1\right)=\dfrac{4}{2} =\boxed{2}\end{aligned}


Proof of the identity: Set ζ 0 = cos 2 π 7 ( 2 cos π 2 1 ) = sin 4 π 7 2 sin 2 π 7 ( 2 cos π 2 1 ) = 1 2 sin 2 π 7 ( sin 5 π 7 + sin 3 π 7 sin 4 π 7 ) = 1 2 sin 2 π 7 ( sin 5 π 7 2 cos 7 π 2 7 sin π 7 ) = sin 5 π 7 2 sin 2 π 7 = sin ( π 2 π 7 ) 2 sin 2 π 7 = 1 2 ( sin 2 π 7 sin 2 π 7 ) = 1 2 \begin{aligned} \zeta_0& = \cos\dfrac{2\pi}{7}\left(2\cos\dfrac{\pi}{2}-1\right) \\& =\dfrac{\sin\dfrac{4\pi}{7}}{2\sin\dfrac{2\pi}{7}}\left(2\cos\dfrac{\pi}{2}-1\right)\\& = \dfrac{1}{2\sin\dfrac{2\pi}{7}}\left(\sin\dfrac{5\pi}{7}+\sin\dfrac{3\pi}{7}-\sin\dfrac{4\pi}{7} \right)\\& = \dfrac{1}{2\sin\dfrac{2\pi}{7}}\left(\sin\dfrac{5\pi}{7}-2\cos\dfrac{7\pi}{2\cdot7}\cdot \sin\dfrac{\pi}{7}\right) \\& = \dfrac{\sin\dfrac{5\pi}{7}}{2\sin\dfrac{2\pi}{7}}= \dfrac{\sin\left(\pi-\dfrac{2\pi}{7}\right)}{2\sin\dfrac{2\pi}{7}} =\dfrac{1}{2}\left(\dfrac{\sin\dfrac{2\pi}{7}}{\sin\dfrac{2\pi}{7}}\right)=\dfrac{1}{2} \end{aligned}

What is meaning of ( F . Y . I ) (F.Y.I) in the problem?

Matin Naseri - 2 years, 9 months ago

Log in to reply

For your information.

Naren Bhandari - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...