z 2 = i z^2 = i

Algebra Level 2

z 2 = i \large z^2 = i

Complex number z z satisfying the equation above can be expressed as A + B i C \dfrac{A + Bi}{\sqrt{C}} and D E i F \dfrac{-D - Ei}{\sqrt{F}} , where A A , B B , C C , D D , E E , and F F . Input A + B + C + D + E + F A + B + C + D + E + F as your answer.

Notation: i = 1 i = \sqrt{-1} denotes the imaginary unit .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 20, 2020

By Euler's formula , we have e i θ = cos θ + i sin θ e^{i\theta} = \cos \theta + i \sin \theta . Then,

z 2 = i By Euler’s theorem = e ( 2 n + 1 2 ) π i where n Z \begin{aligned} z^2 & = i & \small \blue{\text{By Euler's theorem}} \\ & = e^{\left(2n + \frac 12\right)\pi i} & \small \blue{\text{where }n \in \mathbb Z} \end{aligned}

z = { e π 4 i = cos π 4 + i sin π 4 = 1 + i 2 if n is even. e 5 π 4 i = cos 5 π 4 + i sin 5 π 4 = 1 i 2 if n is odd. \implies z = \begin{cases} e^{\frac \pi 4 i} = \cos \frac \pi 4 + i \sin \frac \pi 4 = \dfrac {1+i}{\sqrt 2} & \text{if }n \text{ is even.} \\ e^{\frac {5\pi} 4 i} = \cos \frac {5\pi} 4 + i \sin \frac {5\pi 4} = \dfrac {-1-i}{\sqrt 2} & \text{if }n \text{ is odd.} \end{cases}

Therefore, A + B + C + E + D + F = 1 + 1 + 2 + 1 + 1 + 2 = 8 A+B+C+E+D+F = 1 + 1 + 2 + 1 + 1 + 2 = \boxed 8 .

z 2 = i = e i π 2 z = ± 1 + i 2 z^2=i=e^{\frac{iπ}{2}}\implies z=\pm \dfrac {1+i}{\sqrt 2 }

So A = B = D = E = 1 , C = F = 2 A=B=D=E=1,C=F=2 and the required answer is 1 + 1 + 2 + 1 + 1 + 2 = 8 1+1+2+1+1+2=\boxed 8 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...