A calculus problem by Sarth Vitekar

Calculus Level 5

1 1 + 1 2 2 3 + 1 4 + 1 5 2 6 + 1 7 + 1 8 2 9 + = ? \large \frac{1}{1} + \frac{1}{2} - \frac{2}{3} + \frac{1}{4} + \frac{1}{5} - \frac{2}{6} + \frac{1}{7} + \frac{1}{8} - \frac{2}{9} + \cdots = \ ?


The answer is 1.0986.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Brian Moehring
Mar 10, 2017

The N N th partial sum can be written as S N = n = 1 N 1 n n = 1 N / 3 3 3 n = n = 1 N 1 n n = 1 N / 3 1 n = ( n = 1 N 1 n ln ( N ) ) ( n = 1 N / 3 1 n ln N / 3 ) + ( ln ( N ) ln N / 3 ) = ( n = 1 N 1 n ln ( N ) ) ( n = 1 N / 3 1 n ln N / 3 ) + ln ( N N / 3 ) \begin{aligned} S_N &= \sum_{n=1}^N \frac{1}{n} - \sum_{n=1}^{\lfloor N/3\rfloor} \frac{3}{3n} = \sum_{n=1}^N \frac{1}{n} - \sum_{n=1}^{\lfloor N/3\rfloor} \frac{1}{n} \\ &= \left(\sum_{n=1}^N \frac{1}{n} - \ln(N)\right) - \left(\sum_{n=1}^{\lfloor N/3\rfloor} \frac{1}{n} - \ln\lfloor{N/3}\rfloor\right) + \left(\ln(N) - \ln\lfloor{N/3}\rfloor\right) \\ &= \left(\sum_{n=1}^N \frac{1}{n} - \ln(N)\right) - \left(\sum_{n=1}^{\lfloor N/3\rfloor} \frac{1}{n} - \ln\lfloor{N/3}\rfloor\right) + \ln\left(\frac{N}{\lfloor{N/3}\rfloor}\right) \end{aligned}

Letting N N\rightarrow\infty , and writing γ \gamma for the Euler-Mascheroni constant, we have lim N S N = γ γ + ln ( 3 ) = ln ( 3 ) 1.09861229 \lim_{N\rightarrow\infty} S_N = \gamma - \gamma + \ln(3) = \ln(3) \approx \boxed{1.09861229}

Nice solution. I found that the series came out to

1 6 × \dfrac{1}{6} \times (sum of reciprocals of the pentagonals ) +

2 3 × \dfrac{2}{3} \times (sum of reciprocals of the octagonals ).

Brian Charlesworth - 4 years, 3 months ago

Can you please elaborate how did you get

lim N ln ( N N / 3 ) = ln ( 3 ) \displaystyle \lim_{N \to \infty} \ln \left( \dfrac{N}{\left \lfloor {N}/{3} \right \rfloor} \right) = \ln (3)

Tapas Mazumdar - 4 years, 3 months ago

Log in to reply

There are a few ways. One way to see it, coming from first principles, is to write N N / 3 = 3 ( 1 + { N / 3 } N / 3 ) \frac{N}{\lfloor{N/3}\rfloor} = 3\cdot\left(1 + \frac{\{N/3\}}{\lfloor{N/3}\rfloor}\right) where { N / 3 } \{N/3\} denotes the fractional part of N / 3 N/3 , so in particular lim N { N / 3 } N / 3 = 0 \lim_{N\rightarrow\infty} \frac{\{N/3\}}{\lfloor{N/3}\rfloor} = 0 (just note that the numerator is bounded between 0 and 1 while the denominator goes to infinity)

Putting it together, lim N ln ( N N / 3 ) = ln ( 3 ( 1 + lim N { N / 3 } N / 3 ) ) = ln ( 3 ( 1 + 0 ) ) = ln ( 3 ) . \lim_{N\rightarrow\infty} \ln\left(\frac{N}{\lfloor N/3\rfloor}\right) = \ln\left(3\cdot\left(1 + \lim_{N\rightarrow\infty} \frac{\{N/3\}}{\lfloor N/3\rfloor}\right)\right) = \ln(3(1+0)) = \ln(3).


As I mentioned, however, the above is by no means the only way. In fact, the way I originally thought of it was to note ln ( N N / 3 ) ln ( 3 ) = ln ( N / 3 ) ln N / 3 1 N / 3 { N / 3 } \left|\ln\left(\frac{N}{\lfloor N/3\rfloor}\right) - \ln(3)\right| = \Big|\ln(N/3) - \ln\lfloor{N/3}\rfloor \Big| \leq \frac{1}{\lfloor N/3\rfloor} \cdot \{N/3\} where the inequality is due to the mean value theorem along with the fact 1 / x 1/x is a decreasing function.

Brian Moehring - 4 years, 3 months ago

Log in to reply

Yes. That clearly explained it to me. Thank you.

Tapas Mazumdar - 4 years, 3 months ago

Amazing Solution. Whow. :D ~

Christian Daang - 4 years, 2 months ago
Chew-Seong Cheong
Mar 10, 2017

S = 1 1 + 1 2 2 3 + 1 4 + 1 5 2 6 + 1 7 + 1 8 2 9 + . . . = 2 ( 1 2 ) 1 + 2 ( 1 2 ) 2 2 ( 1 ) 3 + 2 ( 1 2 ) 4 + 2 ( 1 2 ) 5 2 ( 1 ) 6 + . . . = 2 cos 2 π 3 1 2 cos 4 π 3 2 2 cos 6 π 3 3 2 cos 8 π 3 4 2 cos 10 π 3 5 2 cos 12 π 3 5 . . . = n = 1 2 cos 2 n π 3 n = n = 1 { 2 e 2 n π 3 i n } = 2 { n = 1 e 2 n π 3 i n } = 2 { ln ( 1 e 2 n π 3 i ) } = 2 { ln ( 1 + 1 2 i 3 2 ) } = 2 { ln ( 3 2 i 3 2 ) } = 2 { ln ( 3 e i tan 1 1 3 ) } = 2 { ln 3 i tan 1 1 3 } = 2 ln 3 1.0986 \begin{aligned} S & = \frac 11 + \frac 12 - \frac 23 + \frac 14 + \frac 15 - \frac 26 + \frac 17 + \frac 18 - \frac 29 + ... \\ & = \frac {-2 \left(-\frac 12\right)}1+ \frac {-2 \left(-\frac 12\right)}2 - \frac {2(1)}3 + \frac {-2 \left(-\frac 12\right)}4 + \frac {-2 \left(-\frac 12\right)}5 - \frac {2(1)}6 + ... \\ & = - \frac {2\cos \frac {2\pi}3}1 - \frac {2\cos \frac {4\pi}3}2 - \frac {2\cos \frac {6\pi}3}3 - \frac {2\cos \frac {8\pi}3}4 - \frac {2\cos \frac {10\pi}3}5 - \frac {2\cos \frac {12\pi}3}5 - ... \\ & = \sum_{n=1}^\infty - 2\frac {\cos \frac {2n\pi}3}n \\ & = \sum_{n=1}^\infty \Re \left \{ - 2\frac {e^{\frac {2n\pi}3i}}n \right \} \\ & = - 2 \Re \left \{ \sum_{n=1}^\infty \frac {e^{\frac {2n\pi}3i}}n \right \} \\ & = 2 \Re \left \{\ln \left(1-e^{\frac {2n\pi}3i} \right) \right \} \\ & = 2 \Re \left \{\ln \left(1+\frac 12 - i\frac {\sqrt 3}2 \right) \right \} \\ & = 2 \Re \left \{\ln \left(\frac 32 - i\frac {\sqrt 3}2 \right) \right \} \\ & = 2 \Re \left \{\ln \left(\sqrt 3 e^{-i \tan^{-1}\frac 1{\sqrt 3}} \right) \right \} \\ & = 2 \Re \left \{\ln \sqrt 3 -i \tan^{-1}\frac 1{\sqrt 3} \right \} \\ & = 2 \ln \sqrt 3 \approx \boxed{1.0986} \end{aligned}

Can you explain how you went from the first line to the second line?

In particular, please watch out for the "random rearrangement of terms" which isn't allowed as this sequence doesn't converge absolutely.

Calvin Lin Staff - 4 years, 3 months ago

Log in to reply

I have added a new second line. I did not rearrange the terms.

Chew-Seong Cheong - 4 years, 3 months ago

I guess in the conclusion you mean = 2 { ln ( 3 ) i tan 1 1 3 } \large \displaystyle = 2\Re \Big \{ \ln \Big ( \sqrt{3} \Big ) - i \tan^{-1} \frac{1}{\sqrt{3}} \Big \} ?

Nice solution, by the way!

Guilherme Niedu - 4 years, 2 months ago

Log in to reply

Yes, thanks. I have changed the line. Add a backslash "\" in front of function ln ln x \ln x (note not italic and a space before x x instead of l n x ln x ) and tan tan x \tan x .

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

Done it, thanks.

Guilherme Niedu - 4 years, 2 months ago

May I ask? What is the meaning of this notation? \large \Re ? Does it mean the real part of a certain expression?

Christian Daang - 4 years, 2 months ago
Kartik Sharma
Mar 12, 2017

S = 1 1 + 1 2 2 3 + 1 4 + 1 5 2 6 + \displaystyle S = \frac{1}{1} + \frac{1}{2} - \frac{2}{3} + \frac{1}{4} + \frac{1}{5} - \frac{2}{6} + \cdots

S = 1 1 + 1 2 + 1 3 + 1 4 + 3 ( 1 3 + 1 6 + 1 9 + ) \displaystyle S = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots - 3\left(\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \cdots \right)

If we consider x 1 + x 2 2 + x 3 3 + x 4 4 + = ln ( 1 1 x ) \frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots = \ln\left(\frac{1}{1-x}\right)

ln ( 1 1 ω ) = ω 1 + ω 2 2 + ω 3 3 + \displaystyle \ln\left(\frac{1}{1-\omega}\right) = \frac{\omega}{1} + \frac{\omega^2}{2} + \frac{\omega^3}{3} + \cdots

ln ( 1 1 ω 2 ) = ω 2 1 + ω 4 2 + ω 6 3 + \displaystyle \ln\left(\frac{1}{1-\omega^2}\right) = \frac{\omega^2}{1} + \frac{\omega^4}{2} + \frac{\omega^6}{3} + \cdots

lim x 1 ln ( 1 1 x ) = 1 1 + 1 2 + 1 3 + \displaystyle \lim_{x\rightarrow 1} \ln\left(\frac{1}{1-x}\right) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots

lim x 1 ln ( 1 1 x ) + ln ( 1 1 ω 2 ) + ln ( 1 1 ω ) = 3 ( 1 3 + 1 6 + 1 9 + ) \displaystyle \implies \lim_{x\rightarrow 1} \ln\left(\frac{1}{1-x}\right) + \ln\left(\frac{1}{1-\omega^2}\right) + \ln\left(\frac{1}{1-\omega}\right) = 3\left(\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \cdots \right)

Therefore,

S = lim x 1 ln ( 1 1 x ) lim x 1 ln ( 1 1 x ) ln ( 1 1 ω 2 ) ln ( 1 1 ω ) \displaystyle S = \lim_{x\rightarrow 1} \ln\left(\frac{1}{1-x}\right) - \lim_{x\rightarrow 1} \ln\left(\frac{1}{1-x}\right) - \ln\left(\frac{1}{1-\omega^2}\right) - \ln\left(\frac{1}{1-\omega}\right)

S = log ( 1 ω ω 2 + 1 ) = log ( 3 ) \displaystyle S = \log(1 - \omega - \omega^2 + 1) = \log(3)

Your second line is wrong.

You have written S = infty - infty, which is clearly undefined.

Pi Han Goh - 4 years, 2 months ago

Log in to reply

I noticed this as well. The proof may be saved in spirit if he just writes everything in terms of power series though.

Brian Moehring - 4 years, 2 months ago

You can thus generalize lim n ( H n k H n / k ) = log ( k ) \displaystyle \lim_{n\rightarrow \infty}(H_n - k H_{n/k}) = \log(k) .

Kartik Sharma - 4 years, 3 months ago
Aki Valdez
Mar 26, 2017

the expression above is equal to:

n = 0 ( 1 3 n + 1 + 1 3 n + 2 2 3 n + 3 ) = n = 0 ( 0 1 ( 1 + x 2 x 2 ) ( x 3 n ) d x ) = 0 1 ( 1 + x 2 x 2 ) 1 x 3 d x = 0 1 2 x + 1 x 2 + x + 1 d x = ln ( x 2 + x + 1 ) 0 1 = ln ( 3 ) \sum_{n = 0}^{\infty} \left( \cfrac{1}{3n+1} + \cfrac{1}{3n+2} - \cfrac{2}{3n+3} \right) \\ = \sum_{n = 0}^{\infty} \left( \int_0^1 (1+x-2x^2)\left(x^{3n}\right) \ dx \right) \\ = \int_0^1 \cfrac{(1+x-2x^2)}{1 - x^3} \ dx \\ = \int_0^1 \cfrac{2x+1}{x^2 + x + 1} \ dx \\ = \left. \ln (x^2 + x + 1) \right |_0^1 \\ = \boxed{ \ln (3) }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...