An algebra problem by A Former Brilliant Member

Algebra Level 4

n = 1 ( 3 n ) 1 / 3 n = 3 1 / 3 × 9 1 / 9 × 2 7 1 / 27 × \large \prod_{n=1}^\infty (3^n)^{1/3^n} =3^{1/3} \times 9^{1/9} \times 27^{1/27} \times \cdots

The product above can be expressed as a b / c a^{b/c} , where a a is a prime number , and b , c b,c are coprime positive integers . Find a + b + c a + b +c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Swagat Panda
Aug 13, 2016

3 1 / 3 × 3 2 / 9 × 3 3 / 27 = E Let 3 S = E S = 1 3 + 2 9 + 3 27 + 3 S = 1 + 2 3 + 3 9 + 3 S S = 1 + 1 3 + 1 9 + 1 27 2 S = 1 1 1 3 = 3 2 S = 3 4 E = 3 3 / 4 A + B + C = 3 + 3 + 4 = 10 {3^{1/3}\times3^{2/9}\times3^{3/27}\cdots=E \\ \text{Let }3^{S}=E \\ \Rightarrow S=\dfrac13+\dfrac29+\dfrac3{27}+\cdots \\ 3S=1+\dfrac23+\dfrac39+\cdots \\ 3S-S=1+\dfrac13+\dfrac19+\dfrac1{27}\cdots \\ 2S=\dfrac{1}{1-\dfrac13}=\dfrac32 \\ S=\dfrac34 \Rightarrow E={3}^{3/4} \\\boxed{ A+B+C=3+3+4=10}}

in the 5th row, it should be 3 S S 3S-S isn't it?

Muhammad Altair - 4 years, 10 months ago

Yes, it was a typo error. Thanks for correcting me. :)

Swagat Panda - 4 years, 10 months ago
Chew-Seong Cheong
Aug 13, 2016

P = n = 1 ( 3 n ) 1 3 n log P = log n = 1 ( 3 n 3 n ) = n = 1 log ( 3 n 3 n ) = log 3 n = 1 n 3 n = 1 3 log 3 n = 1 n 3 n 1 Let x = 1 3 = 1 3 log 3 n = 1 n x n 1 = 1 3 log 3 n = 1 d d x ( x n ) = 1 3 log 3 d d x n = 1 x n = 1 3 log 3 d d x ( x 1 x ) = 1 3 log 3 ( 1 1 x + x ( 1 x ) 2 ) = 1 3 log 3 ( 1 ( 1 x ) 2 ) Put back x = 1 3 = 1 3 log 3 ( 1 ( 1 1 3 ) 2 ) = 1 3 log 3 ( 9 4 ) log P = 3 4 log 3 P = 3 3 / 4 \begin{aligned} P & = \prod_{n=1}^\infty \left(3^n\right)^\frac 1{3^n} \\ \log P & = \log \prod_{n=1}^\infty \left(3^\frac n{3^n}\right) = \sum _{n=1}^\infty \log \left(3^\frac n{3^n}\right) = \log 3 \sum _{n=1}^\infty \frac n{3^n} \\ & = \frac 1{\color{#D61F06}{3}} \log 3 \sum _{n=1}^\infty \frac n {\color{#3D99F6}{3}^{n\color{#D61F06}{-1}}} \quad \quad \small \color{#3D99F6}{\text{Let }x = \frac 13} \\ & = \frac 13 \log 3 \sum _{n=1}^\infty nx^{n-1} = \frac 13 \log 3 \sum _{n=1}^\infty \frac d{dx}(x^n) = \frac 13 \log 3 \frac d{dx} \sum _{n=1}^\infty x^n \\ & = \frac 13 \log 3 \frac d{dx} \left( \frac x{1-x} \right) = \frac 13 \log 3 \left( \frac 1{1-x} + \frac x{(1-x)^2} \right) \\ & = \frac 13 \log 3 \left( \frac 1{(1-\color{#3D99F6}{x})^2} \right) \quad \quad \small \color{#3D99F6}{\text{Put back }x = \frac 13} \\ & = \frac 13 \log 3 \left( \frac 1{\left(1-\color{#3D99F6}{\frac 13}\right)^2} \right) = \frac 13 \log 3 \left( \frac 94 \right) \\ \log P & = \frac 34 \log 3 \\ \implies P & = 3^{3/4} \end{aligned}

a + b + c = 3 + 3 + 4 = 10 \implies a+b+c = 3+3+4 = \boxed{10}

a=3 b= 3 c= 4 feel free to ask anything

Please tell me what is wrong in this solution... 3 1 / 3 × 3 2 / 9 × 3 3 / 27 = E 3 S = E S = 1 3 + 2 9 + 3 27 + 3 S = 1 + 2 3 + 3 9 + 3 S S = 1 + 1 3 + 1 9 + 1 27 2 S = 1 1 1 3 = 3 2 S = 3 4 E = 3 3 4 A + B + C = 3 + 3 + 4 = 10 3^{1/3}\times3^{2/9}\times3^{3/27}\cdots=E \\3^{S}=E \\ \Rightarrow S=\dfrac13+\dfrac29+\dfrac3{27}+\cdots \\3S=1+\dfrac23+\dfrac39+\cdots \\3S-S=1+\dfrac13+\dfrac19+\dfrac1{27}\cdots \\2S=\dfrac{1}{1-\dfrac13}=\dfrac32 \\S=\dfrac34 \Rightarrow E=3^\frac34 \\ A+B+C=3+3+4=10

Swagat Panda - 4 years, 10 months ago

Log in to reply

i have edited the prob , your solution is right, i forgot the real problem as i did it tomorrow , sorry for the inconvience. i will name you as a solver if possible

A Former Brilliant Member - 4 years, 10 months ago

Log in to reply

Thanks, I tried the answer 10 but it showed wrong, I checked my answer several times, but couldn't find any mistake, so I decided to post it, coz cross checking helps. Now I am a bit relieved.

Swagat Panda - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...