Zeros of a complex function

Algebra Level 3

Other than the trivial solution of z = 0 z=0 , is there any other roots for the equation sin z z = 0 \sin z - z = 0 , where z z is a complex number ?

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Dec 13, 2016

Let z = a + b i z = a + bi be any complex number such that:

s i n ( z ) = z e i z e i z 2 i = a + b i e i ( a + b i ) e i ( a + b i ) 2 i = a + b i e b e i a e b e i a = 2 i ( a + b i ) sin(z) = z \Rightarrow \frac{e^{iz} - e^{-iz}}{2i} = a + bi \Rightarrow \frac{e^{i(a+bi)} - e^{-i(a+bi)}}{2i} = a + bi \Rightarrow e^{-b} \cdot e^{ia} - e^{b} \cdot e^{-ia} = 2i \cdot (a + bi)

or finally, e b ( c o s ( a ) + i s i n ( a ) ) e b ( c o s ( a ) i s i n ( a ) ) = 2 b + 2 a i . e^{-b} \cdot (cos(a) + i sin(a)) - e^{b} \cdot (cos(a) - i sin(a)) = -2b + 2ai. Setting the real and the imaginary parts equal to each other now yields:

REAL: ( e b e b ) c o s ( a ) = 2 b 2 s i n h ( b ) c o s ( a ) = 2 b s i n h ( b ) c o s ( a ) = b ; (e^{-b} - e^{b}) \cdot cos(a) = -2b \Rightarrow -2\cdot sinh(b) cos(a) = -2b \Rightarrow sinh(b)cos(a) = b;

IMAGINARY: ( e b + e b ) s i n ( a ) = 2 a 2 c o s h ( b ) s i n ( a ) = 2 a c o s h ( b ) s i n ( a ) = a . (e^{-b} + e^{b}) \cdot sin(a) = 2a \Rightarrow 2\cdot cosh(b) sin(a) = 2a \Rightarrow cosh(b)sin(a) = a.

Knowing that c o s ( a ) , s i n ( a ) [ 1 , 1 ] cos(a), sin(a) \in [-1, 1] for all a a , we now express:

c o s ( a ) = b s i n h ( b ) 1 b s i n h ( b ) 1 s i n h ( b ) b s i n h ( b ) ; cos(a) = \frac{b}{sinh(b)} \Rightarrow -1 \le \frac{b}{sinh(b)} \le 1 \Rightarrow -sinh(b) \le b \le sinh(b);

s i n ( a ) = a c o s h ( b ) 1 a c o s h ( b ) 1 c o s h ( b ) a c o s h ( b ) . sin(a) = \frac{a}{cosh(b)} \Rightarrow -1 \le \frac{a}{cosh(b)} \le 1 \Rightarrow -cosh(b) \le a \le cosh(b).

The first inequality pair is satisfied iff b 0 b \ge 0 . For every non-negative value of b b that is substituted into the second inequality pair, there exists at least one value of a [ c o s h ( b ) , c o s h ( b ) ] a \in [-cosh(b), cosh(b)] that satisfies s i n ( a + b i ) = a + b i sin(a + bi) = a + bi other than the trivial solution z = 0. z = 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...