Zeta?

Calculus Level 4

lim x 1 + ( x 1 ) ζ ( x ) = ? \large \lim _{ x\to{ 1 }^{ + } }{ (x-1)\zeta (x) } =\, ?

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 25, 2016

Relevant wiki: Riemann zeta function

Whittaker and Watson (1990, p. 271) (eqn. 15) showed that for complex number s s , where [ s ] > 1 \Re[s]>1 , as s 1 s \to 1 : lim s 1 [ ζ ( s ) 1 s 1 ] = γ \lim_{s \to 1} \left[\zeta(s)-\dfrac 1{s-1} \right]=\gamma where γ \gamma is the Euler-Mascheroni constant .

Therefore, we have:

lim x 1 [ ζ ( x ) 1 x 1 ] = γ lim x 1 + [ ( x 1 ) ζ ( x ) x 1 x 1 ] = lim x 1 + ( x 1 ) γ lim x 1 + ( x 1 ) ζ ( x ) 1 = 0 lim x 1 + ( x 1 ) ζ ( x ) = 1 \begin{aligned} \lim_{x \to 1} \left[\zeta(x)-\dfrac 1{x-1} \right] & = \gamma \\ \lim_{x \to 1^+} \left[(x-1) \zeta(x)-\dfrac {x-1}{x-1} \right] & = \lim_{x \to 1^+} (x-1)\gamma \\ \lim_{x \to 1^+} (x-1) \zeta(x)-1 & = 0 \\ \implies \lim_{x \to 1^+} (x-1) \zeta(x) & = \boxed{1} \end{aligned}

We define η ( s ) = ( 1 2 1 s ) ζ ( s ) \displaystyle \eta(s) = (1-2^{1-s})\zeta(s) where s > 1 s>1 , where η ( s ) = n = 1 ( 1 ) n 1 n s \displaystyle \eta(s)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^s} .

lim x 1 + ( x 1 ) ζ ( x ) = lim x 1 + η ( x ) 1 2 1 x x 1 = lim x 1 + η ( x ) l n 2 = η ( 1 ) l n 2 = 1 \displaystyle \lim_{x\to1^+}(x-1)\zeta(x) = \displaystyle \lim_{x\to1^+} \frac{\eta(x)}{\frac{1-2^{1-x}}{x-1}} = \displaystyle \lim_{x\to1^+} \frac{\eta(x)}{ln2} = \displaystyle \frac{\eta(1)}{ln2}=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...