Zeta Function Doesn't Matter

Calculus Level 4

M = lim n n 2 [ A ( 1 + 1 2 3 + 1 3 3 + 1 4 3 + . . . + 1 n 3 ) ] M=\lim_{n\to\infty}n^2[A-(1+\frac1{2^3}+\frac1{3^3}+\frac1{4^3}+...+\frac1{n^3})] If this limit exists,then M = ? M=?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Lie
May 8, 2018

Relevant wiki: Stolz–Cesàro theorem

M = lim n n 2 [ A ( 1 + 1 2 3 + 1 3 3 + 1 4 3 + + 1 n 3 ) ] = lim n A ( 1 + 1 2 3 + 1 3 3 + 1 4 3 + + 1 n 3 ) 1 n 2 By Stolz-Ces a ˋ ro theorem = lim n 1 ( n + 1 ) 3 1 ( n + 1 ) 2 1 n 2 = lim n n 2 ( 2 n + 1 ) ( n + 1 ) = lim n 1 ( 2 + 1 n ) ( 1 + 1 n ) = 1 2 = 0.5 . \begin{aligned} M&=\lim_{n\to\infty}n^2\left[A-\left(1+\frac1{2^3}+\frac1{3^3}+\frac1{4^3}+\cdots+\frac1{n^3}\right)\right] \\&=\lim_{n\to\infty}\frac {A-\left(1+\frac1{2^3}+\frac1{3^3}+\frac1{4^3}+\cdots+\frac1{n^3}\right)}{\frac 1{n^2}}&\small \color{#3D99F6}\text{By Stolz-Cesàro theorem} \\&=\lim_{n\to\infty}\frac {-\frac 1{(n+1)^3}}{\frac 1{(n+1)^2}-\frac 1{n^2}} \\&=\lim_{n\to\infty}\frac {n^2}{(2n+1)(n+1)} \\&=\lim_{n\to\infty}\frac 1{\left(2+\frac 1n\right)\left(1+\frac 1n\right)} \\&=\frac 12=\boxed{0.5}. \end{aligned}

Patrick Corn
May 9, 2018

The sum 1 k 3 \sum \frac1{k^3} converges by standard tests, and it clearly must converge to A A for the limit to exist. Then M = lim n n 2 ( 1 ( n + 1 ) 3 + 1 ( n + 2 ) 3 + ) = lim n 1 n ( 1 ( 1 + 1 n ) 3 + 1 ( 1 + 2 n ) 3 + ) = 1 1 x 3 d x = 1 2 x 2 1 = 0.5 . \begin{aligned} M &= \lim_{n\to\infty} n^2 \left( \frac1{(n+1)^3} + \frac1{(n+2)^3} + \cdots \right) \\ &= \lim_{n\to\infty} \frac1{n} \left( \frac1{(1+\frac1{n})^3} + \frac1{(1+\frac2{n})^3} + \cdots \right) \\ &= \int\limits_1^\infty \frac1{x^3} \, dx \\ &= -\frac1{2x^2} \bigg|_1^\infty \\ &= \fbox{0.5}. \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...