Zeta pushed to the limit 1

Calculus Level 5

lim s ( ζ ( s ) 1 ) 1 / s . \large \lim_{s \to \infty} (\zeta(s)-1)^{1/s}.

Evaluate the limit above, where ζ ( s ) = t = 1 1 t s \displaystyle \zeta (s) = \sum_{t=1}^\infty \dfrac 1{t^s} denotes the Riemann zeta function .


You might also enjoy part 2 and/or 3 .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Augusto Bernardi
Nov 5, 2015

First, we can express ζ ( s ) 1 \zeta(s) - 1 as the sum:

ζ ( s ) 1 \zeta(s) - 1 = n = 2 1 n s \displaystyle \sum_{n=2}^\infty \frac{1}{n^{s}}

Then, we state that, as s s goes to infinity, the following equality becomes true:

n = 2 1 n s \displaystyle \sum_{n=2}^\infty \frac{1}{n^{s}} = 2 1 n s d n . \displaystyle \int_2^\infty \! \frac{1}{n^{s}} \, \mathrm{d}n.

(I don't really know how to formally proof this, but if you compare the graph of the step function corresponding to the sum at the left side and the graph of 1 n s \frac{1}{n^{s}} , and take s s closer and closer to infinity, it's quite believable =p).

Solving the integral, we find:

lim s + ( 2 1 n s d n . ) 1 s \lim_{s \to +\infty} \Bigg({ \displaystyle \int_2^\infty \! \frac{1}{n^{s}} \, \mathrm{d}n.}\Bigg)^\frac {1}{s} = lim s + n 1 s ( s 1 ) 1 s n \lim_{s \to +\infty} \frac {n^{\frac {1}{s}}}{(s-1)^{\frac {1}{s}}n} , from infinity to two.

Since lim s + s 1 s = 1 \lim_{s \to +\infty} s^{\frac {1}{s}} = 1 and lim s + ( s 1 ) 1 s = 1 \lim_{s \to +\infty} (s-1)^{\frac {1}{s}} = 1 , we have:

lim s + n 1 s ( s 1 ) 1 s n \lim_{s \to +\infty} \frac {n^{\frac {1}{s}}}{(s-1)^{\frac {1}{s}}n} , from infinity to two = 0.5

Chew-Seong Cheong
Dec 10, 2018

L = lim s ( ζ ( s ) 1 ) 1 s = lim s ( 1 + 1 2 s + 1 3 s + 1 4 s + 1 ) 1 s = lim s ( 1 2 s + 1 3 s + 1 4 s + ) 1 s = lim s 1 2 ( 1 + ( 2 3 ) s + ( 2 4 ) s + ( 2 5 ) s + ) 1 s = 1 2 = 0.5 \begin{aligned} L & = \lim_{s \to \infty} (\zeta(s)-1)^\frac 1s \\ & = \lim_{s \to \infty} \left( 1 + \frac 1{2^s} + \frac 1{3^s} + \frac 1{4^s} + \cdots - 1\right)^\frac 1s \\ & = \lim_{s \to \infty} \left(\frac 1{2^s} + \frac 1{3^s} + \frac 1{4^s} + \cdots \right)^\frac 1s \\ & = \lim_{s \to \infty} \frac 12 \left(1 + \left(\frac 23 \right)^s + \left(\frac 24 \right)^s + \left(\frac 25 \right)^s + \cdots \right)^\frac 1s \\ & = \frac 12 = \boxed{0.5} \end{aligned}

Jake Lai
Nov 3, 2015

First, we express ζ ( s ) 1 \zeta(s)-1 as a sum:

ζ ( s ) 1 = n = 2 1 n s \zeta(s)-1 = \sum_{n=2}^{\infty} \frac{1}{n^s}

Now, we use that, lim N ( a A a N ) 1 / N = max A \displaystyle \lim_{N \to \infty} \left( \sum_{a \in A} a^N \right)^{1/N} = \max A when all elements of A A are positive, and thus evaluate the limit:

lim s ( ζ ( s ) 1 ) 1 / s = lim s ( n = 2 1 n s ) 1 / s = max { 1 2 , 1 3 , } = 1 2 \lim_{s \to \infty} (\zeta(s)-1)^{1/s} = \lim_{s \to \infty} \left( \sum_{n=2}^{\infty} \frac{1}{n^s} \right)^{1/s} = \max \lbrace \frac{1}{2}, \frac{1}{3}, \ldots \rbrace = \boxed{\frac{1}{2}}

might be useful

Julian Poon - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...