This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We begin by taking the logarithm of the expression:
ln [ s → ∞ lim ζ ( s − 1 ) − 1 ζ ( s ) − 1 ] = s → ∞ lim ln [ ζ ( s − 1 ) − 1 ζ ( s ) − 1 ] = s → ∞ lim [ ln ( ζ ( s ) − 1 ) − ln ( ζ ( s − 1 ) − 1 ) ]
We then multiply the whole thing by 1, in a smart way.
s → ∞ lim [ ln ( ζ ( s ) − 1 ) − ln ( ζ ( s − 1 ) − 1 ) ] = s → ∞ lim [ s s ln ( ζ ( s ) − 1 ) − s − 1 s − 1 ln ( ζ ( s − 1 ) − 1 ) ]
= s → ∞ lim [ s ln ( ( ζ ( s ) − 1 ) 1 / s ) − ( s − 1 ) ln ( ( ζ ( s − 1 ) − 1 ) 1 / s ) ]
Now, we use our result from the first problem, ie s → ∞ lim ( ζ ( s ) − 1 ) 1 / s = 2 1 to further simply the expression.
s → ∞ lim [ s ln ( ( ζ ( s ) − 1 ) 1 / s ) − ( s − 1 ) ln ( ( ζ ( s − 1 ) − 1 ) 1 / s ) ] = s → ∞ lim [ s ln 2 1 − ( s − 1 ) ln 2 1 ] = ln 2 1
Hence,
ln [ s → ∞ lim ζ ( s − 1 ) − 1 ζ ( s ) − 1 ] = ln 2 1
and so
s → ∞ lim ζ ( s − 1 ) − 1 ζ ( s ) − 1 = 2 1
Problem Loading...
Note Loading...
Set Loading...
s → ∞ lim ζ ( s − 1 ) − 1 ζ ( s ) − 1 = s → ∞ lim 2 s − 1 1 + 3 s − 1 1 + 4 s − 1 1 + ⋯ 2 s 1 + 3 s 1 + 4 s 1 + ⋯ = s → ∞ lim 2 + 3 s − 1 2 s + 4 s − 1 2 s + ⋯ 1 + 3 s 2 s + 4 s 2 s + ⋯ = 2 1 .