Zeta pushed to the limit 2

Calculus Level 4

Evaluate

lim s ζ ( s ) 1 ζ ( s 1 ) 1 . \lim_{s \to \infty} \frac{\zeta(s)-1}{\zeta(s-1)-1}.


You might also enjoy part 1 and/or 3 .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jon Haussmann
Nov 4, 2015

lim s ζ ( s ) 1 ζ ( s 1 ) 1 = lim s 1 2 s + 1 3 s + 1 4 s + 1 2 s 1 + 1 3 s 1 + 1 4 s 1 + = lim s 1 + 2 s 3 s + 2 s 4 s + 2 + 2 s 3 s 1 + 2 s 4 s 1 + = 1 2 . \begin{aligned} \lim_{s \to \infty} \frac{\zeta(s) - 1}{\zeta(s - 1) - 1} &= \lim_{s \to \infty} \frac{\frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dotsb}{\frac{1}{2^{s - 1}} + \frac{1}{3^{s - 1}} + \frac{1}{4^{s - 1}} + \dotsb} \\ &= \lim_{s \to \infty} \frac{1 + \frac{2^s}{3^s} + \frac{2^s}{4^s} + \dotsb}{2 + \frac{2^s}{3^{s - 1}} + \frac{2^s}{4^{s - 1}} + \dotsb} \\ &= \frac{1}{2}. \end{aligned}

Jake Lai
Nov 3, 2015

We begin by taking the logarithm of the expression:

ln [ lim s ζ ( s ) 1 ζ ( s 1 ) 1 ] = lim s ln [ ζ ( s ) 1 ζ ( s 1 ) 1 ] = lim s [ ln ( ζ ( s ) 1 ) ln ( ζ ( s 1 ) 1 ) ] \ln \left[ \lim_{s \to \infty} \frac{\zeta(s)-1}{\zeta(s-1)-1} \right] = \lim_{s \to \infty} \ln \left[ \frac{\zeta(s)-1}{\zeta(s-1)-1} \right] = \lim_{s \to \infty} \left[ \ln(\zeta(s)-1)-\ln(\zeta(s-1)-1) \right]

We then multiply the whole thing by 1, in a smart way.

lim s [ ln ( ζ ( s ) 1 ) ln ( ζ ( s 1 ) 1 ) ] = lim s [ s s ln ( ζ ( s ) 1 ) s 1 s 1 ln ( ζ ( s 1 ) 1 ) ] \lim_{s \to \infty} \left[ \ln(\zeta(s)-1)-\ln(\zeta(s-1)-1) \right] = \lim_{s \to \infty} \left[ \frac{s}{s} \ln(\zeta(s)-1)-\frac{s-1}{s-1} \ln(\zeta(s-1)-1) \right]

= lim s [ s ln ( ( ζ ( s ) 1 ) 1 / s ) ( s 1 ) ln ( ( ζ ( s 1 ) 1 ) 1 / s ) ] = \lim_{s \to \infty} \left[ s \ln((\zeta(s)-1)^{1/s})-(s-1) \ln((\zeta(s-1)-1)^{1/s}) \right]

Now, we use our result from the first problem, ie lim s ( ζ ( s ) 1 ) 1 / s = 1 2 \displaystyle \lim_{s \to \infty} (\zeta(s)-1)^{1/s} = \frac{1}{2} to further simply the expression.

lim s [ s ln ( ( ζ ( s ) 1 ) 1 / s ) ( s 1 ) ln ( ( ζ ( s 1 ) 1 ) 1 / s ) ] = lim s [ s ln 1 2 ( s 1 ) ln 1 2 ] = ln 1 2 \lim_{s \to \infty} \left[ s \ln((\zeta(s)-1)^{1/s})-(s-1) \ln((\zeta(s-1)-1)^{1/s}) \right] = \lim_{s \to \infty} \left[ s \ln \frac{1}{2} - (s-1) \ln \frac{1}{2} \right] = \ln \frac{1}{2}

Hence,

ln [ lim s ζ ( s ) 1 ζ ( s 1 ) 1 ] = ln 1 2 \ln \left[ \lim_{s \to \infty} \frac{\zeta(s)-1}{\zeta(s-1)-1} \right] = \ln \frac{1}{2}

and so

lim s ζ ( s ) 1 ζ ( s 1 ) 1 = 1 2 \lim_{s \to \infty} \frac{\zeta(s)-1}{\zeta(s-1)-1} = \boxed{\frac{1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...