ζ ( 2 ) = π 2 6 \zeta(2) = \frac{\pi^2}{6}

Calculus Level 5

Find the value of : 0 π 2 tan x ln ( sin x ) d x \displaystyle \int_{0}^{\frac{\pi}{2}} \tan x \ln(\sin x) dx .


The answer is -0.411.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tunk-Fey Ariawan
Feb 13, 2014

Rewrite 0 π 2 tan x ln ( sin x ) d x = 0 π 2 sin x cos x ln ( sin x ) d x . \begin{aligned} \int_0^{\Large\frac{\pi}{2}}\tan x\ln(\sin x)\,dx=\int_0^{\frac{\pi}{2}}\frac{\sin x}{\cos x}\ln(\sin x)\,dx. \end{aligned} Let y = cos x \,y=\cos x , then d y = sin x d x \,dy=-\sin x\,dx . For 0 < x < π 2 \,0<x<\frac{\pi}{2} , we have 0 < y < 1 \,0<y<1 . Now, it turns out to be 0 π 2 sin x cos x ln ( sin x ) d x = 0 π 2 sin x cos x ln ( 1 cos 2 x ) d x = 1 2 0 1 ln ( 1 y 2 ) y d y . (1) \begin{aligned} \int_0^{\Large\frac{\pi}{2}}\frac{\sin x}{\cos x}\ln(\sin x)\,dx&=\int_0^{\Large\frac{\pi}{2}}\frac{\sin x}{\cos x}\ln(\sqrt{1-\cos^2 x})\,dx\\ &=-\frac{1}{2}\int_0^1\frac{\ln(1-y^2)}{y}\,dy.\tag1\\ \end{aligned} Next, use Maclaurin series for natural logarithm : ln ( 1 y 2 ) = n = 1 y 2 n n . (2) \ln(1-y^2)=-\sum_{n=1}^\infty \frac{y^{2n}}{n}.\tag2\\ Substituting ( 2 ) \,(2) to ( 1 ) \,(1) yields 1 2 0 1 ln ( 1 y 2 ) y d y = 1 2 0 1 n = 1 y 2 n n y d y = 1 2 n = 1 0 1 y 2 n 1 n d y = 1 4 n = 1 y 2 n n 2 y = 0 1 = 1 4 n = 1 1 n 2 . \begin{aligned} \frac{1}{2}\int_0^1\frac{\ln(1-y^2)}{y}\,dy&=-\frac{1}{2}\int_0^1\sum_{n=1}^\infty \frac{y^{2n}}{ny}\,dy\\ &=-\frac{1}{2}\sum_{n=1}^\infty\int_0^1 \frac{y^{2n-1}}{n}\,dy\\ &=-\frac{1}{4}\sum_{n=1}^\infty \left.\frac{y^{2n}}{n^2}\right|_{y=0}^1\\ &=-\frac{1}{4}\sum_{n=1}^\infty \frac{1}{n^2}. \end{aligned} The infinite series above is defined as Riemann zeta function ζ ( 2 ) = π 2 6 \,\zeta (2)=\frac{\pi^2}{6} . Thus, 0 π 2 tan x ln ( sin x ) d x = 1 4 n = 1 1 n 2 = 1 4 π 2 6 = π 2 24 0.411234 \begin{aligned} \int_0^{\frac{\pi}{2}}\tan x\ln(\sin x)\,dx&=-\frac{1}{4}\sum_{n=1}^\infty \frac{1}{n^2}\\ &=-\frac{1}{4}\cdot \frac{\pi^2}{6}\\ &=-\frac{\pi^2}{24}\\ &\approx \boxed{-0.411234} \end{aligned}


Here is another way to solve the integral without using Taylor series. Substituting y = x 2 y=x^2 , we obtain 0 1 ln ( 1 x 2 ) x d x = 1 2 0 1 ln ( 1 y ) y d y \int_0^1\frac{\ln(1-x^2)}{x}\ dx=\frac12\int_0^1\frac{\ln(1-y)}{y}\ dy Using the fact that ln ( 1 y ) y = 0 1 1 1 x y d x \frac{\ln(1-y)}{y}=-\int_0^1\frac{1}{1-xy}\ dx then 1 2 0 1 ln ( 1 y ) y d y = 1 2 y = 0 1 x = 0 1 1 1 x y d x d y . \frac12\int_0^1\frac{\ln(1-y)}{y}\ dy=-\frac12\int_{y=0}^1\int_{x=0}^1\frac{1}{1-xy}\ dx\ dy. Using transformation variable by setting ( u , v ) = ( x + y 2 , x y 2 ) (u,v)=\left(\frac{x+y}{2},\frac{x-y}{2}\right) so that ( x , y ) = ( u v , u + v ) (x,y)=(u-v,u+v) and its Jacobian is 2 2 . Therefore 1 2 y = 0 1 x = 0 1 1 1 x y d x d y = A d u d v 1 u 2 + v 2 , -\frac12\int_{y=0}^1\int_{x=0}^1\frac{1}{1-xy}\ dx\ dy=-\iint_A\frac{du\ dv}{1-u^2+v^2}, where A A is the square with vertices ( 0 , 0 ) , ( 1 2 , 1 2 ) , ( 1 , 0 ) , (0,0),\left(\frac{1}{2},-\frac{1}{2}\right), (1,0), and ( 1 2 , 1 2 ) \left(\frac{1}{2},\frac{1}{2}\right) . Exploiting the symmetry of the square, we obtain A d u d v 1 u 2 + v 2 = 2 u = 0 1 2 v = 0 u d v d u 1 u 2 + v 2 + 2 u = 1 2 1 v = 0 1 u d v d u 1 u 2 + v 2 = 2 u = 0 1 2 1 1 u 2 arctan ( u 1 u 2 ) d u + 2 u = 1 2 1 1 1 u 2 arctan ( 1 u 1 u 2 ) d u . \begin{aligned} \iint_A\frac{du\ dv}{1-u^2+v^2}&=2\int_{u=0}^{\Large\frac12}\int_{v=0}^u\frac{dv\ du}{1-u^2+v^2}+2\int_{u=\Large\frac12}^1\int_{v=0}^{1-u}\frac{dv\ du}{1-u^2+v^2}\\ &=2\int_{u=0}^{\Large\frac12}\frac{1}{\sqrt{1-u^2}}\arctan\left(\frac{u}{\sqrt{1-u^2}}\right)\ du+2\int_{u=\Large\frac12}^1\frac{1}{\sqrt{1-u^2}}\arctan\left(\frac{1-u}{\sqrt{1-u^2}}\right)\ du. \end{aligned} Since arctan ( u 1 u 2 ) = arcsin u \arctan\left(\frac{u}{\sqrt{1-u^2}}\right)=\arcsin u , and if θ = arctan ( 1 u 1 u 2 ) \theta=\arctan\left(\frac{1-u}{\sqrt{1-u^2}}\right) then tan 2 θ = 1 u 1 + u \tan^2\theta=\frac{1-u}{1+u} and sec 2 θ = 2 1 + u \sec^2\theta=\frac{2}{1+u} . It follows that u = 2 cos 2 θ 1 = cos 2 θ u=2\cos^2\theta-1=\cos2\theta and θ = 1 2 arccos u = π 4 1 2 arcsin u \theta=\frac12\arccos u=\frac\pi4-\frac12\arcsin u . Thus A d u d v 1 u 2 + v 2 = 2 u = 0 1 2 arcsin u 1 u 2 d u + 2 u = 1 2 1 1 1 u 2 ( π 4 1 2 arcsin u ) d u = [ ( arcsin u ) 2 ] u = 0 1 2 + [ π 2 arcsin u 1 2 ( arcsin u ) 2 ] u = 1 2 1 = π 2 36 + π 2 4 π 2 8 π 2 12 + π 2 72 = π 2 12 \begin{aligned} \iint_A\frac{du\ dv}{1-u^2+v^2} &=2\int_{u=0}^{\Large\frac12}\frac{\arcsin u}{\sqrt{1-u^2}}\ du+2\int_{u=\Large\frac12}^1\frac{1}{\sqrt{1-u^2}}\left(\frac\pi4-\frac12\arcsin u\right)\ du\\ &=\bigg[(\arcsin u)^2\bigg]_{u=0}^{\Large\frac12}+\left[\frac\pi2\arcsin u-\frac12(\arcsin u)^2\right]_{u=\Large\frac12}^1\\ &=\frac{\pi^2}{36}+\frac{\pi^2}{4}-\frac{\pi^2}{8}-\frac{\pi^2}{12}+\frac{\pi^2}{72}\\ &=\frac{\pi^2}{12} \end{aligned} and the result follows.


# Q . E . D . # \Large\color{#3D99F6}{\text{\# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{\#}}

Really Intelligent. Good Solution.

Milun Moghe - 7 years, 3 months ago

Really good solution, Brilliant problem.

Anish Puthuraya - 7 years, 3 months ago

Brilliant solution! But is there a way to solve this without the taylor series?

Sanat Anand - 7 years, 3 months ago

Log in to reply

Challenge's accepted bro. Take a look my edited solution. ¨ \ddot\smile

Tunk-Fey Ariawan - 6 years, 10 months ago

Relevant wiki: Polylogarithm

I = 0 π 2 tan x ln ( sin x ) d x = 0 π 2 sin x cos x ln ( sin x ) d x Let u = sin x d u = cos x d x = 0 1 u ln u 1 u 2 d u = 1 2 0 1 ( ln u 1 u ln u 1 + u ) d u By a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 1 ln ( 1 u ) u d u 1 2 ( ln ( 1 + u ) ln x 0 1 0 1 ln ( 1 + u ) u d u ) By integration by parts = Li 2 ( 1 ) 2 1 2 ( 0 0 1 ln ( 1 t ) t d t ) Li 2 ( z ) is dilogarithm function. = Li 2 ( 1 ) 2 Li 2 ( 1 ) 2 Let t = u = π 2 12 + π 2 24 = π 2 24 0.411 \begin{aligned} I & = \int_0^\frac \pi 2 \tan x \ln (\sin x) \ dx \\ & = \int_0^\frac \pi 2 \frac {\sin x}{\cos x} \ln (\sin x) \ dx & \small \color{#3D99F6} \text{Let }u = \sin x \implies du = \cos x dx \\ & = \int_0^1 \frac {u \ln u}{1-u^2} \ du \\ & = \frac 12 \int_0^1 \left({\color{#3D99F6}\frac {\ln u}{1-u}} - {\color{#D61F06}\frac {\ln u}{1+u}} \right) du & \small \color{#3D99F6} \text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 {\color{#3D99F6} \int_0^1 \frac {\ln (1-u)}u du} - \frac 12 {\color{#D61F06}\left( \ln(1+u)\ln x \bigg|_0^1 - \int_0^1 \frac {\ln (1+u)}u du \right)} & \small \color{#D61F06} \text{By integration by parts} \\ & = - \frac {\color{#3D99F6}\text{Li}_2 (1)}2 - \frac 12 \left(0 - {\color{#D61F06}\int_0^{-1} \frac {\ln (1-t)}t dt} \right) & \small \color{#3D99F6} \text{Li}_2(z) \text{ is dilogarithm function.} \\ & = - \frac {\color{#3D99F6}\text{Li}_2 (1)}2 - \frac {\color{#D61F06}\text{Li}_2 (-1)}2 & \small \color{#3D99F6} \text{Let }t = -u \\ & = - \frac {\pi^2}{12} + \frac {\pi^2}{24} = - \frac {\pi^2}{24} \approx \boxed{- 0.411} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...