Zi Song's Gargantuan Root

Algebra Level 5

The sum of all real numbers x x such that

x = 1 29 ( 3 29 x 1 2013 ) x = \frac{1}{29}(3 - \sqrt[2013]{29x - 1})

can be written as a b c \frac{a\sqrt{b}}{c} , where a a and c c are positive coprime integers and b b is a positive integer that is not divisible by the square of a prime. Find a + b + c a + b + c .

This problem is posed by Zi Song Y .

Details and assumptions

Note: a , b a, b and c c could be 1. For example, if the sum is 1 = 1 1 1 1 = \frac{1 \sqrt{1} } {1} , then your answer is a + b + c = 3 a+b+c = 3 .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ishan Singh
Nov 13, 2014

Given: x = 1 29 ( 3 29 x 1 2013 ) x=\frac{1}{29}(3-\sqrt[2013]{29x-1})

Let 29 x 1 = t 2013 29x-1=t^{2013}

t 2013 + t 2 = 0 \implies t^{2013}+t-2=0

Let f ( t ) = t 2013 + t 2 f(t)=t^{2013}+t-2 . By Descartes' Rule of Signs , we get,

At max 1 positive real root since number of sign changes in f ( t ) = t 2013 + t 2 is 1 \bullet \text{At max 1 positive real root since number of sign changes in} \: f(t)=t^{2013}+t-2 \: \text{is 1}

At max 0 negative real roots since number of sign changes in f ( t ) = t 2013 t 2 is 0 \bullet \text{At max 0 negative real roots since number of sign changes in} \: f(-t)=-t^{2013}-t-2 \: \text{is 0}

Also, t = 1 t=1 is a root of f ( t ) f(t) and it must be the only real root (by Descartes' Rule of Signs).

x = 2 29 \implies x=\frac{2}{29}

a + b + c = 32 \implies a+b+c=\boxed{32}

L e t f ( a , b , c ) = 3 ( 29 ( a s q r t ( b ) / c ) 1 ) ( 1 / 2013 ) ) 29 ( a s q r t ( b ) / c ) . I v a r i e d v a l u e s o f a , b , c . a = 1 , b = 1 , f ( 1 , 1 , 10 ) = 0.031.... , f ( 1 , 1 , 20 ) = + . 089.... S o c l o s e u p , f ( 1 , 1 , 15 ) = + . 0023.... f ( 1 , 1 , 14 ) = . 246422... Z e r o b e t w e e n c = 14 a n d c = 15. N o z e r o a t a n i n t e g e r . S o b 1. b = 2 t o 5 a l s o g a v e n o s o l u t i o n . N e x t t r i e d a = 2 , b = 1 , c = 1 , 10 , 20 , 29 ! ! ! ! g o t 0 , t h e s o l u t i o n . S o a = 2 , b = 1 , c = 29. S t i l l r e q u i r e d t o p r o v e t h a t t h i s i s t h e o n l y s o l u t i o n . N o t e ( a s q r t ( b ) / c ) = x . Let~f(a,b,c)=3 - \Big (29*(a*sqrt(b)/c) - 1 \Big)^(1/2013) )-29* ( a*sqrt(b)/c ).\\ I~varied~values~of~a,~b,~c. ~~a=1, ~~b=1, ~~~f(1,1,10)={\color{#D61F06}{-}}0.031...., ~~f(1,1,20)={\color{#3D99F6}{+}}.089....\\ So~close~ up,~~f(1,1,15)={\color{#3D99F6}{+}}.0023....~~~~~~~~f(1,1,14)={\color{#D61F06}{-}}.246422...\\ Zero~between~c=14~and~c=15.~~No~zero~at~an ~integer.~~So~b\neq 1.\\ b=2~to~5~~also~gave~no~solution.\\ Next~tried~a=2,~b=1, ~~c=1,10,20,29~!!!!~got~0, ~the~ solution.\\ So~a=2,~~b=1,~~c=29.\\ Still~required~to~prove~that ~this~is~ the~only~solution.\\ Note~(a*sqrt(b)/c)=x.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...