Log Trig Integral 3

Calculus Level 3

0 π 4 log ( cot ( x ) + 1 ) d x = π log ( 2 ) a + G \large \int_0^{\frac{\pi }{4}} \log (\cot (x)+1) \, dx=\frac{\pi \log (2)}{a}+G

where G G is the Catalan's constant and a a is a positive integer. Submit a a .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 23, 2017

I = 0 π 4 log ( cot x + 1 ) d x = 0 π 4 log ( cos x + sin x sin x ) d x = 0 π 4 log ( 2 sin ( x + π 4 ) sin x ) d x = 0 π 4 1 2 log 2 d x + 0 π 4 log ( sin ( x + π 4 ) ) d x 0 π 4 log ( sin x ) d x By a b f ( x ) d x = a b f ( a + b x ) d x = π log 2 8 + 0 π 4 log ( sin ( π 2 x ) ) d x 0 π 4 log ( 2 sin x ) d x + 0 π 4 log 2 d x See reference: G = 2 0 π 4 log ( 2 sin x ) d x = π log 2 8 + 0 π 4 log ( cos x ) d x + G 2 + 0 π 4 log 2 d x = π log 2 8 + 0 π 4 log ( 2 cos x ) d x + G 2 See reference: G = 2 0 π 4 log ( 2 cos x ) d x = π log 2 8 + G 2 + G 2 = π log 2 8 + G \begin{aligned} I & = \int_0^\frac \pi 4 \log(\cot x + 1) dx \\ & = \int_0^\frac \pi 4 \log \left(\frac {\cos x + \sin x}{\sin x} \right) dx \\ & = \int_0^\frac \pi 4 \log \left(\frac {\sqrt 2 \sin \left(x + \frac \pi 4\right)}{\sin x} \right) dx \\ & = \int_0^\frac \pi 4 \frac 12 \log 2 \ dx + {\color{#3D99F6}\int_0^\frac \pi 4 \log \left(\sin \left(x + \frac \pi 4\right) \right) dx} - \int_0^\frac \pi 4 \log \left(\sin x \right) dx & \small \color{#3D99F6} \text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac {\pi \log 2}8 + {\color{#3D99F6}\int_0^\frac \pi 4 \log \left(\sin \left(\frac \pi 2 - x \right) \right) dx} - {\color{#D61F06}\int_0^\frac \pi 4 \log \left(2\sin x \right) dx} + \int_0^\frac \pi 4 \log 2 \ dx & \small \color{#D61F06} \text{See reference: }G = - 2 \int_0^\frac \pi 4 \log \left(2\sin x \right) dx \\ & = \frac {\pi \log 2}8 + {\color{#3D99F6}\int_0^\frac \pi 4 \log \left(\cos x \right) dx} + {\color{#D61F06} \frac G2} + \color{#3D99F6} \int_0^\frac \pi 4 \log 2 \ dx \\ & = \frac {\pi \log 2}8 + {\color{#3D99F6}\int_0^\frac \pi 4 \log \left(2\cos x \right) dx} + \frac G2 & \small \color{#3D99F6} \text{See reference: }G = 2 \int_0^\frac \pi 4 \log \left(2\cos x \right) dx \\ & = \frac {\pi \log 2}8 + {\color{#3D99F6}\frac G2} + \frac G2 \\ & = \frac {\pi \log 2}8 + G \end{aligned}

a = 8 \implies a = \boxed{8}


Reference: G G , the Catalan's constant

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...