Combinatorics:01

প্রশ্ন:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 একক দৈর্ঘ্য বিশিষ্ট রেখা সমূহ দ্বারা কয়টি ত্রিভুজ গঠন সম্ভব???

Solution:

দেওয়া আছে,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
আমরা জানি,ত্রিভুজ গঠনের জন্য,দুইটি বাহুর যোগফল,তৃতীয় টির চেয়ে বেশি হতে হবে। অর্থাৎ,a+b>c

16 টি হতে যেকোনো তিনটি নিয়ে ত্রিভুজ গঠন সম্ভব=16C3।এখন আমরা বের করবো,কোনগুলো তে ত্রিভুজ গঠন অসম্ভব

Case: a+b=c or a+b<c হলে ত্রিভুজ গঠন অসম্ভব। (I)বাহু a=1,b=2 হলে,c এর মান সম্ভব 14 টি
a=1,b=3 হলে c এর মান সম্ভব=13 টি...... .....
..... a=1,b=15 হলে,c সম্ভব=1 টি
অর্থাৎ,a=1 fixed রেখে মোট অসম্ভব ত্রিভুজ সংখ্যা=1+2+3+....+14=15C2[we know→1+2+....+n=(n+1)C2]

a=2 fixed রেখে মোট অসম্ভব ত্রিভুজ সংখ্যা=1+2+3+....+12=13C2
a=3 fixed রেখে,1+2+...10=11C2
এভাবে a=7 fixed করে পর্যন্ত চলতে থাকবে।ফলে,

মোট অসম্ভব ত্রিভুজ সংখ্যা=15C2+13C2+11C2+.....+3C2
Ans:16C3-(15C2+13C2+11C2+....+3C2)
=252


Translation:

Q: How many scalene triangles with sides a,b,ca, b , c can be formed, where a,b,c{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}a, b, c \in \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}?

Solution:

We know that, for the formation of the triangle, the sum of two sides, will be more than a third. In other words, a + b> c

Total ways of choosing three numbers = 16 C3. Now we'll find combinations which are impossible to form a triangle.

If a+b=ca + b = c or a+b<ca + b <c then it is impossible to form a triangle.
If a = 1, b = 2, then, there are 14 possible values of cc.
If a = 1, b = 3, then there are 13 possible values of cc .
\vdots \quad \quad \vdots \quad \quad \vdots
If a = 1, b = 15, then, 1 value of cc is possible.
In other words, when a = 1 (fixed), the total number of impossible triangles = 1 + 2 + 3 + .... + 14 = 15 C2 [we know → 1 + 2 + .... + n = (n + 1) C2]

With a = 2 fixed, the total number of impossible triangles = 1 + 2 + 3 + .... + 12 = 13 C2
With a = 3 fixed, 1 + 2 + ... 10 = 11 C2
Thus, if a = 7 fixed, 1 + 2 = 3 C2

The total number of impossible triangles = 15 C2 + 13C2 + 11C2 + ..... + 3C2
Ans: The total number of possible triangles = 16C3- (15C2 + 13C2 + 11C2 + .... + 3C2)
= 252

Note by Sazzad Hossain Rafi
4 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...