1+xn1+x^n in Fractions?

Could you calculate

11+xndx\large \int \frac{1}{1+x^n} dx

for every positive integer nn?

#Calculus

Note by Pepper Mint
3 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Ok......What if someone replaces the + sign with a - sign........Can we solve it and generalize it??

Aaghaz Mahajan - 3 years, 3 months ago

Log in to reply

That is a good point we can use its series expansion... WAIT THE SERIES EXPANSION!!! We can use it to maybe SOLVE THE INTEGRAL (in series form BUT WHO CARES)!!! 11+x=1x+x2x3+x4...=n=0(1)nxn\frac { 1 }{ 1+x } =1-x+{ x }^{ 2 }-{ x }^{ 3 }+{ x }^{ 4 }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ n } } 11+x2=1x2+x4x6+x8...=n=0(1)nx2n\frac { 1 }{ 1+{ x }^{ 2 } } =1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ 2n } } 11+x3=1x3+x6x9+x12...=n=0(1)nx3n\frac { 1 }{ 1+{ x }^{ 3 } } =1-{ x }^{ 3 }+{ x }^{ 6 }-{ x }^{ 9 }+{ x }^{ 12 }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ 3n } } So: 11+xk=1xk+x2kx3k+x4k...=n=0(1)nxkn\frac { 1 }{ 1+{ x }^{ k } } =1-{ x }^{ k }+{ x }^{ 2k }-{ x }^{ 3k }+{ x }^{ 4k }-...=\sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ kn } } and...: 11+xkdx=(1xk+x2kx3k+x4k...)dx=n=0(1)nxkndx\int { \frac { 1 }{ 1+{ x }^{ k } } dx } =\int { (1-{ x }^{ k }+{ x }^{ 2k }-{ x }^{ 3k }+{ x }^{ 4k }-...)dx } =\int { \sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ kn } } dx }

Simplifying the integral of the right: (Not including the +C in the integral) n=0(1)nxkndx=n=0(1)nxkndx=n=0(1)nxkn+1kn+1=xxk+1k+1+x2k+12k+1x3k+13k+1+x4k+14k+1...\int { \sum _{ n=0 }^{ \infty }{ { (-1) }^{ n }{ x }^{ kn } } dx } =\sum _{ n=0 }^{ \infty }{ \int { { (-1) }^{ n }{ x }^{ kn }dx } } =\sum _{ n=0 }^{ \infty }{ \frac { { (-1) }^{ n }{ x }^{ kn+1 } }{ kn+1 } } =x-\frac { { x }^{ k+1 } }{ k+1 } +\frac { { x }^{ 2k+1 } }{ 2k+1 } -\frac { { x }^{ 3k+1 } }{ 3k+1 } +\frac { { x }^{ 4k+1 } }{ 4k+1 } -... ... which is so far all the work that can be done, without using any special functions.

Thus: 11+xkdx=n=0(1)nxkn+1kn+1\int { \frac { 1 }{ 1+{ x }^{ k } } dx } =\sum _{ n=0 }^{ \infty }{ { \frac { { (-1) }^{ n }{ x }^{ kn+1 } }{ kn+1 } } } Done

Oon Han - 3 years, 2 months ago

Just glancing at it and some solutions computed with WolframAlpha, it looks like you have to use partial fractions to decompose it and then integrate term-by-term, which makes me unsure about whether or not a closed-form solution exists...

Aram Lindroth - 3 years, 3 months ago

Log in to reply

Integrate term by term... that is correct. In fact, the terms you need to integrate are actually very surprising.. x^n and -x^k! The answer is that 11+xkdx=n=0(1)nxkn+1kn+1\int { \frac { 1 }{ 1+{ x }^{ k } } dx } =\sum _{ n=0 }^{ \infty }{ { \frac { { (-1) }^{ n }{ x }^{ kn+1 } }{ kn+1 } } } !

Oon Han - 3 years, 2 months ago

Log in to reply

You can see the power rule in the summation!

Oon Han - 3 years, 2 months ago

Anyway, we know that: 11+xdx=ln(1+x)+C\int { \frac { 1 }{ 1+{ x } } } dx=\ln { (1+x) } +C and 11+x2dx=arctanx+C\int { \frac { 1 }{ 1+{ x }^{ 2 } } } dx=\arctan { x } +C but 11+x3dx\int { \frac { 1 }{ 1+{ x }^{ 3 } } } dx is a mess...

(Just in case you don't believe me): 11+x3dx=lnx2x+12(lnx+1+3arctan(2x13))6+C\int { \frac { 1 }{ 1+{ x }^{ 3 } } } dx=-\frac { \ln { |{ x }^{ 2 }-x+1| } -2(\ln { |x+1| } +\sqrt { 3 } \arctan { (\frac { 2x-1 }{ \sqrt { 3 } } ) } ) }{ 6 } +C

Oon Han - 3 years, 3 months ago

@Pepper Mint Well, we can solve this sort of definite integral ranging from 0 to infinity.........this is simply using Beta function....!!!

Aaghaz Mahajan - 3 years ago

Log in to reply

But it won't help solve for the indefinite integral. hmm

Oon Han - 2 years, 12 months ago

@Pepper Mint Have a look at this paper...

Aaghaz Mahajan - 2 years, 2 months ago
×

Problem Loading...

Note Loading...

Set Loading...