Find the remainder when (12342)+(12346)+(123410)…+(12341230)+(12341234) {1234 \choose 2} + {1234 \choose 6} + {1234 \choose 10} \ldots + {1234 \choose 1230} + {1234 \choose 1234} (21234)+(61234)+(101234)…+(12301234)+(12341234) is divided by 30 30 30.
Note by Anqi Li 7 years, 5 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Let NN N denote that expression, because (nk)=(nn−k) {n \choose k } = {n \choose n-k} (kn)=(n−kn)
N=(12341232)+(12341228)+(12341224)+…+(12344)+(12340)N = {1234 \choose 1232 } + {1234 \choose 1228 } + {1234 \choose 1224 } + \ldots + {1234 \choose 4 } + {1234 \choose 0 } N=(12321234)+(12281234)+(12241234)+…+(41234)+(01234)
Add the "original" NNN and the above equation
2N=(12340)+(12342)+(12344)+(12346)+…+(12341230)+(12341232)+(12341234) 2N = {1234 \choose 0 } + {1234 \choose 2 } + {1234 \choose 4 } + {1234 \choose 6 } + \ldots + {1234 \choose 1230 } + {1234 \choose 1232 } + {1234 \choose 1234 } 2N=(01234)+(21234)+(41234)+(61234)+…+(12301234)+(12321234)+(12341234)
Because ∑k=0n(2n2k)=22n−1 \displaystyle \sum_{k=0}^n {2n \choose 2k} = 2^{2n-1} k=0∑n(2k2n)=22n−1
2N=21233 2N = 2^{1233} 2N=21233
N=21232 N = 2^{1232} N=21232
N(mod2)≡0 N \pmod {2} \equiv 0 N(mod2)≡0
N(mod3)≡(−1)1232≡1 N \pmod {3} \equiv (-1)^{1232} \equiv 1 N(mod3)≡(−1)1232≡1
N(mod5)≡21232 mod 4≡20≡1 N \pmod {5} \equiv 2^{ 1232 \space \bmod {4} } \equiv 2^0 \equiv 1 N(mod5)≡21232 mod4≡20≡1, by Fermat's Little Theorem
Because 2,3,52,3,52,3,5 are pairwise coprime, we can find NN N modulo 303030 by Chinese Remainder Theorem, the answer is 16\boxed{16} 16
Log in to reply
Do you mean ∑k=0n(2n2k)=22n−1 \displaystyle\sum_{k=0}^{n} \dbinom {2n}{2k} = 2^{2n-1} k=0∑n(2k2n)=22n−1?
Fixed......... THANKS
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Let N denote that expression, because (kn)=(n−kn)
N=(12321234)+(12281234)+(12241234)+…+(41234)+(01234)
Add the "original" N and the above equation
2N=(01234)+(21234)+(41234)+(61234)+…+(12301234)+(12321234)+(12341234)
Because k=0∑n(2k2n)=22n−1
2N=21233
N=21232
N(mod2)≡0
N(mod3)≡(−1)1232≡1
N(mod5)≡21232 mod4≡20≡1, by Fermat's Little Theorem
Because 2,3,5 are pairwise coprime, we can find N modulo 30 by Chinese Remainder Theorem, the answer is 16
Log in to reply
Do you mean k=0∑n(2k2n)=22n−1?
Log in to reply
Fixed......... THANKS