A combinatorics problem from pre RMO 2015

A subset BB of the set of first 100 positive integer has the property that no two elements of BB sum upto 125. What is the maximum number of elements in BB?

#Combinatorics

Note by Nihar Mahajan
5 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Maximum number of elements in R is 62. From 1 to 24 and either one of (62, 63), (61, 64), (60, 65), . . . . ., (26, 99), (25, 100).

Rajen Kapur - 5 years, 6 months ago

Log in to reply

Yes , correct. The basic idea is complementation. We find a,ba,b such that a+b=125a+b=125 and we have 38 pairs of it. So excluding such pairs , the remaining numbers that 1 to 24 must at least be included in set BB. To make number of elements maximum , we include either all aa or bb making the max. number of elements as 24+38=6224+38=62.

Nihar Mahajan - 5 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...