A cute problem on circumscribed polygons

Suppose that we have a convex polygon with some red sides and some blue sides. Suppose that it has the property that there does not exist two red sides that are adjacent, but the total lengths of the red sides combined is more than the total lengths of the blue sides.

Prove that it is impossible to inscribed within the polygon a circle.

#Geometry #Polygons #Proofs #Inscribe #Circumscribe

Note by Daniel Liu
7 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

All right it has been long enough for me to post a solution.

First, suppose that we can inscribe a circle in the polygon. Note that the sum of the lengths of the blue sides is at least the sum of the red sides because of Power of a Point on each vertex. This contradicts our restriction that the length of the red sides is more than the length of the blue sides, so we are done. \Box

Daniel Liu - 7 years, 4 months ago

Whats the prove??

dhiraj agarwalla - 7 years, 4 months ago

Log in to reply

You will have to find that out yourself.

If it's long enough I might post one. But for now, post your ideas.

Daniel Liu - 7 years, 4 months ago

i think putting a diagram may help me somehow....i am lost halfway in the question....however indeed a nice question...

Shubham Thakur - 7 years, 4 months ago

Yes it is impossible to inscribe a circle within this polygon because its impossible to make such a polygon

If u are trying to make a polygon of even number sides, number of red sticks will be equal to the number if blue sticks

If u are trying to make a polygon of odd number of sides, number of blue sticks will always be greater than number of red sticks

Its my opinion please correct me if I am wrong

Shivaksh Rohatgi - 7 years, 4 months ago

Log in to reply

Your argument fails for irregular polygons.

Sreejato Bhattacharya - 7 years, 4 months ago

Log in to reply

Can you explain how that unproves it? I don't see it.

Daniel Liu - 7 years, 4 months ago
×

Problem Loading...

Note Loading...

Set Loading...