This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
It's equivalent to proving that {21⋅10x5}<21 has infinitely many solution in positive integers x.
Kronecker's Approximation Theorem seems too weak... This reminds me of the problem of proving if an irrational is a Normal Number which is not an easy task, although the problem statement seems to be quite a bit looser.
If 5 is normal then the answer would be yes, but as you point out, such a strong condition may not be necessary here. That said, if there were only a finite number of digits less than 5 in the expansion, then there would be some digit such that all subsequent digits are 5 or greater. If we then divided (or multiplied) by 2, then some, (and probably an infinite number), of these subsequent digits would "switch" to being less than 5. It's hard to see how such a simple operation could so drastically change the density of the digits of the decimal expansion of an irrational number, (which is most likely normal in the first place), but I'll have to read more about normal numbers to do more than just wave my hands and say "Clearly, ....". :)
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
It's equivalent to proving that {21⋅10x5}<21 has infinitely many solution in positive integers x.
Kronecker's Approximation Theorem seems too weak... This reminds me of the problem of proving if an irrational is a Normal Number which is not an easy task, although the problem statement seems to be quite a bit looser.
Anybody have any ideas?
Log in to reply
If 5 is normal then the answer would be yes, but as you point out, such a strong condition may not be necessary here. That said, if there were only a finite number of digits less than 5 in the expansion, then there would be some digit such that all subsequent digits are 5 or greater. If we then divided (or multiplied) by 2, then some, (and probably an infinite number), of these subsequent digits would "switch" to being less than 5. It's hard to see how such a simple operation could so drastically change the density of the digits of the decimal expansion of an irrational number, (which is most likely normal in the first place), but I'll have to read more about normal numbers to do more than just wave my hands and say "Clearly, ....". :)
Log in to reply
Oh wait, right the density of numbers in 5 is definitely not the same as 25.