A floor integral

Evaluate : 012x21x dx. \int\limits_0^1\left\lfloor\frac{2}{x}\right\rfloor-2\left\lfloor\frac{1}{x}\right\rfloor\ \mathrm{d}x.

#Calculus #Integration #Integrals

Note by Haroun Meghaichi
6 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

With the substitution 1x=t\dfrac{1}{x}=t, the integral is:

12t2tt2dt=n=1(nn+1/2(2n)2(n)t2dt+n+1/2n+1(2n+1)2(n)t2dt)\displaystyle \int_1^{\infty} \frac{\lfloor 2t \rfloor-2\lfloor t \rfloor}{t^2}\,dt = \sum_{n=1}^{\infty} \left(\int_n^{n+1/2} \frac{(2n)-2(n)}{t^2}\,dt+\int_{n+1/2}^{n+1} \frac{(2n+1)-2(n)}{t^2}\,dt \right)

=n=1n+1/2n+1(2n+1)2(n)t2dt=n=1(22n+122n+2)\displaystyle =\sum_{n=1}^{\infty} \int_{n+1/2}^{n+1} \frac{(2n+1)-2(n)}{t^2}\,dt =\sum_{n=1}^{\infty} \left(\frac{2}{2n+1}-\dfrac{2}{2n+2}\right)

=2(1314+1516+)=2((112+1314+)12)=2ln21\displaystyle =2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots \right)=2\left(\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \right)-\frac{1}{2}\right)=\boxed{2\ln 2-1}

Pranav Arora - 6 years, 11 months ago

Log in to reply

Exactly my method to do it. Good job. ^ There is a small remark, if nn is an integer we may not always get : af(t) dt=limnanf(t) dt\int_a^{\infty} f(t)\ \mathrm{d}t = \lim_{n\to \infty} \int_a^n f(t) \ \mathrm{d}t For example f(t)=sin(2πt)f(t)=\sin(2\pi t), the first step should be checking whether it converges, if it does we can use this trick.

Haroun Meghaichi - 6 years, 11 months ago

I'm a little confused. First I split the integral into two

012xdx2011xdx \int_{0}^{1} \left \lfloor \frac{2}{x} \right \rfloor dx - 2\int_{0}^{1} \left \lfloor \frac{1}{x} \right \rfloor dx

In the first one I substituted x = 2t, to get

201/21tdt2011xdx 2\int_{0}^{1/2} \left \lfloor \frac{1}{t} \right \rfloor dt - 2\int_{0}^{1} \left \lfloor \frac{1}{x} \right \rfloor dx

which equals

21/211tdt -2 \int_{1/2}^{1} \left \lfloor \frac{1}{t} \right \rfloor dt

Now since t lies between 1/2 and 1, 1/t will lie between 1 and 2, therefore the integral will change to

21/211dt -2 \int_{1/2}^{1} 1 dt

which will evaluate to -1

Vaibhav Sawhney - 6 years, 11 months ago

I'm a little confused. First I split the integral into two

012xdx2011xdx \int_{0}^{1} \left \lfloor \frac{2}{x} \right \rfloor dx - 2\int_{0}^{1} \left \lfloor \frac{1}{x} \right \rfloor dx

In the first one I substituted x = 2t, to get

201/21tdt2011xdx 2\int_{0}^{1/2} \left \lfloor \frac{1}{t} \right \rfloor dt - 2\int_{0}^{1} \left \lfloor \frac{1}{x} \right \rfloor dx

which equals

21/211tdt -2 \int_{1/2}^{1} \left \lfloor \frac{1}{t} \right \rfloor dt

Now since t lies between 1/2 and 1, 1/t will lie between 1 and 2, therefore the integral will change to

21/211dt -2 \int_{1/2}^{1} 1 dt

which will evaluate to -1

Vaibhav Sawhney - 6 years, 11 months ago

The exact answer is log(4)1=0.386294...\log(4)-1=0.386294..., which is from the infinite sum

n=1(22n+122n+2)\displaystyle\sum _{ n=1 }^{ \infty }{ \left(\dfrac { 2 }{ 2n+1 } -\dfrac { 2 }{ 2n+2 } \right) }

Edited your LaTeX \LaTeX

Michael Mendrin - 6 years, 11 months ago

Looking at the rectangular areas under the line segments given by the two floor functions:

012xdx=2(2223)+3(2324)+4(2425)+5(2526)+...=n=2n(2n2n+1)=2n=21n+1011xdx=1(1112)+2(1213)+3(1314)+4(1415)...=n=1n(1n1n+1)=n=11n+12n=21n+12n=11n+1=2(12)=1 \int_0^1 \lfloor \frac{2}{x} \rfloor \mathrm{d}x \\ = 2\left(\frac{2}{2}-\frac{2}{3}\right)+3\left(\frac{2}{3}-\frac{2}{4}\right)+4\left(\frac{2}{4}-\frac{2}{5}\right)+5\left(\frac{2}{5}-\frac{2}{6}\right)+... \\ = \sum_{n=2}^{\infty} n\left(\frac{2}{n}-\frac{2}{n+1}\right) \\ = 2 \sum_{n=2}^{\infty} \frac{1}{n+1} \\ \int_0^1 \lfloor \frac{1}{x} \rfloor \mathrm{d}x \\ = 1\left(\frac{1}{1}-\frac{1}{2}\right)+2\left(\frac{1}{2}-\frac{1}{3}\right)+3\left(\frac{1}{3}-\frac{1}{4}\right)+4\left(\frac{1}{4}-\frac{1}{5}\right) ... \\ = \sum_{n=1}^{\infty} n \left( \frac{1}{n}-\frac{1}{n+1} \right) \\ = \sum_{n=1}^{\infty} \frac{1}{n+1} 2 \sum_{n=2}^{\infty} \frac{1}{n+1} - 2 \sum_{n=1}^{\infty} \frac{1}{n+1} = -2 \left( \frac{1}{2} \right) = -1

Bill Bell - 6 years, 11 months ago

My approach went like this:

First, note that

011x  dx=limN1/N11x  dx\displaystyle \int_0^1 \left\lfloor\dfrac{1}{x}\right\rfloor\;dx = \displaystyle\lim_{N\to\infty} \int_{1/N}^1 \left\lfloor\dfrac{1}{x}\right\rfloor\;dx

1x=n\left\lfloor\dfrac{1}{x}\right\rfloor = n whenever n1x<n+1n\leq \dfrac{1}{x} < n+1, or 1n+1<x1n\dfrac{1}{n+1}<x\leq\dfrac{1}{n}. This means that

1/(n+1)1/n1x  dx=1/(n+1)1/nn  dx=n(1n1n+1)\displaystyle \int_{1/(n+1)}^{1/n} \left\lfloor\dfrac{1}{x}\right\rfloor\;dx = \displaystyle \int_{1/(n+1)}^{1/n} n\;dx = n\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right) for every nNn\in\mathbb{N}

This now leads us to split the floor integral into a sum, with intervals (1/(n+1),1/n](1/(n+1),1/n]:

limN1/N11x  dx=limNn=1N11/(n+1)1/nn  dx\displaystyle\lim_{N\to\infty} \int_{1/N}^1 \left\lfloor\dfrac{1}{x}\right\rfloor\;dx =\displaystyle\lim_{N\to\infty} \sum_{n=1}^{N-1} \displaystyle \int_{1/(n+1)}^{1/n} n\;dx.

Working in a similar way with 2x\left\lfloor\dfrac{2}{x}\right\rfloor, we find that our integral is supposed to be equal to

limN(m=2N12/(m+1)2/mm  dx2n=1N11/(n+1)1/nn  dx)\displaystyle\lim_{N\to\infty}\left( \sum_{m=2}^{N-1} \displaystyle \int_{2/(m+1)}^{2/m} m\;dx-2\sum_{n=1}^{N-1} \displaystyle \int_{1/(n+1)}^{1/n} n\;dx \right).

After making the lower limit of the sums equal, the variables similar and expanding the integrals, the sums should cancel out and what is left is one term

21/(n+1)1/nn  dx-2\displaystyle \int_{1/(n+1)}^{1/n} n\;dx when n=1n=1

as a result of making the lower limits equal. This is equal to 1\boxed{-1}

Kevin Catbagan - 6 years, 11 months ago

Log in to reply

The upper bound in the mm sum should be 2N12N-1.

Haroun Meghaichi - 6 years, 11 months ago

Log in to reply

thanks haha, ok let me rewrite. I was thinking, "wait this is answer is too nice"

Kevin Catbagan - 6 years, 11 months ago

2*log(2) -1

Surajit Rajagopal - 6 years, 11 months ago

C

Akram Elbarsha - 6 years, 10 months ago
×

Problem Loading...

Note Loading...

Set Loading...