ak(a−b)(a−c)+bk(b−a)(b−c)+ck(c−a)(c−b)>k(k−1)2\dfrac {a^k}{(a-b)(a-c)} + \dfrac {b^k}{(b-a)(b-c)} + \dfrac {c^k}{(c-a)(c-b)} > \dfrac {k(k-1)}{2}(a−b)(a−c)ak+(b−a)(b−c)bk+(c−a)(c−b)ck>2k(k−1)
If aaa, bbb and ccc are distinct positive reals such that abc=1abc = 1abc=1, and k≥3k \geq 3k≥3 is a positive integer, show that the inequality above holds.
Note: The RMO problem had the case k=3k=3k=3.
Note by Sharky Kesa 4 years, 8 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Anyone got a better solution than this?
Firstly, we add the fractions together (using the fact b−a=−(a−b)b-a=-(a-b)b−a=−(a−b), etc. to get
ak(a−b)(a−c)+bk(b−a)(b−c)+ck(c−a)(c−b)=ak(b−c)−bk(a−c)+ck(a−b)(a−b)(a−c)(b−c)=akb−abk−akc+bkc+ck(a−b)(a−b)(a−c)(b−c)=ab(a−b)(ak−2+…+bk−2)−c(a−b)(ak−1+…+bk−1)+ck(a−b)(a−b)(a−c)(b−c)=ak−1b+…+abk−1−ak−1c+…+bk−1c+ck(a−c)(b−c)=ak−1b−ak−1c+ak−2b2−ak−2bc+…+abk−1−abk−2c−bk−1c+ck(a−c)(b−c)=(b−c)(ak−1+ak−2b+…+abk−2)−c(b−c)(bk−2+…+ck−2)(a−c)(b−c)=ak−1+…+abk−2−bk−2c−…−ck−1a−c=ak−1−ck−1+ak−2b−bck−2+…+abk−2−bk−2ca−c=(a−c)(ak−2+…+ck−2)+b(a−c)(ak−3+…+ck−3)+…+bk−2(a−c)a−c=ak−2+…+ck−2+ak−3b+…+bck−3+…+bk−2\begin{aligned} \dfrac {a^k}{(a-b)(a-c)} + \dfrac {b^k}{(b-a)(b-c)} + \dfrac {c^k}{(c-a)(c-b)} &= \dfrac{a^k (b-c) - b^k (a-c) + c^k (a-b)}{(a-b)(a-c)(b-c)}\\ &= \dfrac {a^k b - ab^k - a^k c + b^k c + c^k (a-b)}{(a-b)(a-c)(b-c)}\\ &= \dfrac {ab (a-b)(a^{k-2} + \ldots + b^{k-2}) - c (a-b)(a^{k-1} + \ldots + b^{k-1}) + c^k (a-b)}{(a-b)(a-c)(b-c)}\\ &= \dfrac {a^{k-1} b + \ldots + ab^{k-1} - a^{k-1} c + \ldots + b^{k-1} c + c^k}{(a-c)(b-c)}\\ &= \dfrac {a^{k-1} b - a^{k-1} c + a^{k-2} b^2 - a^{k-2} bc + \ldots + ab^{k-1} - ab^{k-2} c - b^{k-1} c + c^k}{(a-c)(b-c)}\\ &= \dfrac {(b-c)(a^{k-1} + a^{k-2}b + \ldots + ab^{k-2}) - c(b-c)(b^{k-2} + \ldots + c^{k-2})}{(a-c)(b-c)}\\ &= \dfrac {a^{k-1} + \ldots + ab^{k-2} - b^{k-2}c - \ldots - c^{k-1}}{a-c}\\ &= \dfrac {a^{k-1} - c^{k-1} + a^{k-2} b - b c^{k-2} + \ldots + ab^{k-2} - b^{k-2} c}{a-c}\\ &= \dfrac {(a-c)(a^{k-2} + \ldots + c^{k-2}) + b(a-c)(a^{k-3} + \ldots + c^{k-3}) + \ldots + b^{k-2} (a-c)}{a-c}\\ &= a^{k-2} + \ldots + c^{k-2} + a^{k-3} b + \ldots + b c^{k-3} + \ldots + b^{k-2} \end{aligned}(a−b)(a−c)ak+(b−a)(b−c)bk+(c−a)(c−b)ck=(a−b)(a−c)(b−c)ak(b−c)−bk(a−c)+ck(a−b)=(a−b)(a−c)(b−c)akb−abk−akc+bkc+ck(a−b)=(a−b)(a−c)(b−c)ab(a−b)(ak−2+…+bk−2)−c(a−b)(ak−1+…+bk−1)+ck(a−b)=(a−c)(b−c)ak−1b+…+abk−1−ak−1c+…+bk−1c+ck=(a−c)(b−c)ak−1b−ak−1c+ak−2b2−ak−2bc+…+abk−1−abk−2c−bk−1c+ck=(a−c)(b−c)(b−c)(ak−1+ak−2b+…+abk−2)−c(b−c)(bk−2+…+ck−2)=a−cak−1+…+abk−2−bk−2c−…−ck−1=a−cak−1−ck−1+ak−2b−bck−2+…+abk−2−bk−2c=a−c(a−c)(ak−2+…+ck−2)+b(a−c)(ak−3+…+ck−3)+…+bk−2(a−c)=ak−2+…+ck−2+ak−3b+…+bck−3+…+bk−2
Notice that this expression goes through every single possible term composed of variables a,b,ca, b, ca,b,c and degree k−2k-2k−2. Thus, by Supermarket Principle, there are (k2)\binom{k}{2}(2k) terms here. Notice that the product of all the terms will have equal degrees for each of aaa, bbb and ccc by symmetry, so their product will be just 1 (using abc=1abc = 1abc=1). Also, we must have aaa, bbb and ccc distinct for the original expression to have a defined value. Thus, by AM-GM, we have
ak−2+…+ck−2+ak−3b+…+bck−3+…+bk−2(k2)>1ak−2+…+ck−2+ak−3b+…+bck−3+…+bk−2>(k2)=k(k−1)2\begin{aligned} \dfrac {a^{k-2} + \ldots + c^{k-2} + a^{k-3} b + \ldots + b c^{k-3} + \ldots + b^{k-2}}{\dbinom{k}{2}} &> 1\\ a^{k-2} + \ldots + c^{k-2} + a^{k-3} b + \ldots + b c^{k-3} + \ldots + b^{k-2} &> \dbinom {k}{2} = \dfrac {k(k-1)}{2} \end{aligned}(2k)ak−2+…+ck−2+ak−3b+…+bck−3+…+bk−2ak−2+…+ck−2+ak−3b+…+bck−3+…+bk−2>1>(2k)=2k(k−1)
Thus, proven.
Sharky, you've got the right idea. There is a much easier way to show that identity
Claim: am(b−c)+bm(c−a)+cm(a−b)=(a2b−a2c+b2c−b2a+c2a−c2b)∑i+j+k=m−2aibjck a^m (b-c) + b^m(c-a) + c^m (a-b) = (a^2b-a^2c+b^2c-b^2a+c^2a-c^2b) \sum_{i + j + k = m-2} a^i b^j c^k am(b−c)+bm(c−a)+cm(a−b)=(a2b−a2c+b2c−b2a+c2a−c2b)i+j+k=m−2∑aibjck
Proof: Let's find the coefficient of the term apbqcr, a^p b^q c^r, apbqcr, where p+q+r=m+1, p+q+r = m+1, p+q+r=m+1, on the RHS.
Sometimes if you know what you want, it's best to prove it directly instead of trying to explain how you found it out. Esp if the way that you first found it provides no additional insight into the process.
@Svatejas Shivakumar To be clear, your approach works for general nnn through a simple generalization.
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Anyone got a better solution than this?
Firstly, we add the fractions together (using the fact b−a=−(a−b), etc. to get
(a−b)(a−c)ak+(b−a)(b−c)bk+(c−a)(c−b)ck=(a−b)(a−c)(b−c)ak(b−c)−bk(a−c)+ck(a−b)=(a−b)(a−c)(b−c)akb−abk−akc+bkc+ck(a−b)=(a−b)(a−c)(b−c)ab(a−b)(ak−2+…+bk−2)−c(a−b)(ak−1+…+bk−1)+ck(a−b)=(a−c)(b−c)ak−1b+…+abk−1−ak−1c+…+bk−1c+ck=(a−c)(b−c)ak−1b−ak−1c+ak−2b2−ak−2bc+…+abk−1−abk−2c−bk−1c+ck=(a−c)(b−c)(b−c)(ak−1+ak−2b+…+abk−2)−c(b−c)(bk−2+…+ck−2)=a−cak−1+…+abk−2−bk−2c−…−ck−1=a−cak−1−ck−1+ak−2b−bck−2+…+abk−2−bk−2c=a−c(a−c)(ak−2+…+ck−2)+b(a−c)(ak−3+…+ck−3)+…+bk−2(a−c)=ak−2+…+ck−2+ak−3b+…+bck−3+…+bk−2
Notice that this expression goes through every single possible term composed of variables a,b,c and degree k−2. Thus, by Supermarket Principle, there are (2k) terms here. Notice that the product of all the terms will have equal degrees for each of a, b and c by symmetry, so their product will be just 1 (using abc=1). Also, we must have a, b and c distinct for the original expression to have a defined value. Thus, by AM-GM, we have
(2k)ak−2+…+ck−2+ak−3b+…+bck−3+…+bk−2ak−2+…+ck−2+ak−3b+…+bck−3+…+bk−2>1>(2k)=2k(k−1)
Thus, proven.
Sharky, you've got the right idea. There is a much easier way to show that identity
Claim: am(b−c)+bm(c−a)+cm(a−b)=(a2b−a2c+b2c−b2a+c2a−c2b)i+j+k=m−2∑aibjck
Proof: Let's find the coefficient of the term apbqcr, where p+q+r=m+1, on the RHS.
Sometimes if you know what you want, it's best to prove it directly instead of trying to explain how you found it out. Esp if the way that you first found it provides no additional insight into the process.
@Svatejas Shivakumar To be clear, your approach works for general n through a simple generalization.