A huge limit.

Let \(n\geq1\) be an integer, calculate the following limit

limx0lnsin2nxsinxnln2ln(e+sin2x)(e+sin22x)...(e+sin2nx)n1 \lim_{x\to0}\frac{\ln\sqrt[n]{\frac{\sin2^nx}{\sin x}}-\ln2}{\ln\sqrt[n]{(e+\sin^2x)(e+\sin^22x)...(e+\sin^2nx)}-1}

Source : I've encountered this limit a couple years ago, I think that it is from some journal but I'm not sure

#Calculus #Limits

Note by Haroun Meghaichi
6 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

After a little manipulation the given limit can be written as:

limx0ln(cosx×cos2x×cos4x×...×cos2n1x)ln(1+sin2xe)(1+sin22xe)(1+sin23xe)...(1+sin2nxe)\lim\limits_{x\to 0} \displaystyle\frac{\ln (\cos x\times\cos 2x\times\cos 4x\times...\times\cos 2^{n-1}x)}{\ln \left( 1+\dfrac{\sin^{2} x}{e}\right)\left( 1+\dfrac{\sin^{2} 2x}{e}\right)\left( 1+\dfrac{\sin^{2} 3x}{e}\right)...\left( 1+\dfrac{\sin^{2} nx}{e}\right)}

=limx0ln(1+cosx1)cosx1×cosx1x2+ln(1+cos2x1)cos2x1×cos2x1(2x)2×22+...+ln(1+cos2n1x1)cos2n1x1×cos2n1x1(2n1x)2×22n2ln(1+sin2xe)sin2xe×sin2xex2+ln(1+sin22xe)sin22xe×sin22xe(2x)2×22+...+ln(1+sin2nxe)sin2nxe×sin2nxe(nx)2×n2=\lim\limits_{x\to 0} \displaystyle\frac{\dfrac{\ln (1+\cos x-1)}{\cos x-1}\times\dfrac{\cos x-1}{x^{2}}+ \dfrac{\ln (1+\cos 2x-1)}{\cos 2x-1}\times\dfrac{\cos 2x-1}{(2x)^{2}}\times 2^{2}+...+\dfrac{\ln (1+\cos 2^{n-1}x-1)}{\cos 2^{n-1}x-1}\times\dfrac{\cos 2^{n-1}x-1}{(2^{n-1}x)^{2}}\times 2^{2n-2}}{\dfrac{\ln \left( 1+\dfrac{\sin^{2} x}{e}\right)}{\dfrac{\sin^{2} x}{e}}\times\dfrac{\dfrac{\sin^{2} x}{e}}{x^{2}}+\dfrac{\ln \left( 1+\dfrac{\sin^{2} 2x}{e}\right)}{\dfrac{\sin^{2} 2x}{e}}\times\dfrac{\dfrac{\sin^{2} 2x}{e}}{(2x)^{2}}\times 2^{2}+...+\dfrac{\ln \left( 1+\dfrac{\sin^{2} nx}{e}\right)}{\dfrac{\sin^{2} nx}{e}}\times\dfrac{\dfrac{\sin^{2} nx}{e}}{(nx)^{2}}\times n^{2}}

=12(20+22+24+...22n2)1e(12+22+32+...+n2)=\displaystyle\frac{\dfrac{-1}{2}(2^{0}+2^{2}+2^{4}+...2^{2n-2})}{\dfrac{1}{e}(1^{2}+2^{2}+3^{2}+...+n^{2})}

=(122n)en(n+1)(2n+1)=\dfrac{(1-2^{2n})e}{n(n+1)(2n+1)}

Karthik Kannan - 6 years, 11 months ago

Log in to reply

As the lowest power of xx in expansion of denominator is 22, we can put ln(1+cos2rx1)cos2rx1122rx2\ln(1 + \cos 2^rx - 1) \approx \cos 2^rx - 1 \approx - \dfrac{1}{2} 2^r x^2. Hence, we avoid lengthy seeming expression :)

jatin yadav - 6 years, 11 months ago

Using series expansion, I get the answer as (122n)en(n+1)(2n+1)\dfrac{(1 - 2 ^{2n}) e}{n(n+1)(2n+1)} . Is it correct?

jatin yadav - 6 years, 11 months ago

Log in to reply

I believe that you should get ee instead of e2e^2.

Haroun Meghaichi - 6 years, 11 months ago

Log in to reply

Yes, I meant ee, edited.

jatin yadav - 6 years, 11 months ago
×

Problem Loading...

Note Loading...

Set Loading...