A need this question to be solved urgently

three circles of radius 1 cm each are circumcentered by a circle of unknown radius.find the radius of bigger circle

#Geometry

Note by Dikshita Bhatia
5 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

The general formula is R=r[1+sin(πn)]sin(πn)\huge R = \frac{r[1 + \sin(\frac{\pi}{n})]} {\sin(\frac{\pi}{n})} where r,Rr,R and nn are the radius of the inner circle, radius of the outer circle and number of circles inscribed within the larger circle respecticely.

Substituting we get the radius of the outer circle 2.1547\approx 2.1547 cm. Try proving the formula of your own!

A Former Brilliant Member - 5 years, 8 months ago

An other way using basic knowledge is like this: Join centres of small circle to obtain an equilateral triangle. Then simply find length of centroid using basic trigonometry or Pythagoras theorem. When that length is found add the radius of small circle to it. As the centroid of triangle is the center of bigger circle.

Sachin Vishwakarma - 5 years, 8 months ago
×

Problem Loading...

Note Loading...

Set Loading...