Here are two beautiful elementary logarithmic integrals which I came across recently: i) Let m,n be natural numbers. Prove that∫01xmlogn(x)dx=(−1)n(m+1)n+1n!. ii) Prove that∫0axmlogn(x)dx=am+1k=0∑n(−1)k(kn)(m+1)k+1k!×logn−k(a),a>0.
I'll present my own solution to i) and ii).
Solution i)
Let I(m,n) denote the integral, ∫01xmlogn(x)dx, by using IBP, we have
I(m,n)=m+11logn(x)xm+1∣∣∣∣01−m+1m∫01xmlogn−1(x)dx=−m+1nI(m,n−1)=(−1)2(m+1)2n(n−1)I(m,n−2)=…=(−1)n(m+1)nn!I(m,0)=(−1)n(m+1)nn!∫01xmdx=(−1)n(m+1)n+1n!. ■
Solution ii)
Let I(m,n) denote the integral, ∫0axmlogn(x)dx, by using IBP, we have
I(m,n)=m+11logn(x)xm+1∣∣∣∣0a−m+1n∫0axmlogn−1(x)dx=(−1)0(0n)(m+1)0+10!logn−0(x)am+1−m+11(1n)I(m,n−1)=am+1(−1)0(0n)(m+1)0+10!×logn−0(a)−m+11(1n)(m+11logn−1(x)am+1−m+1n−1I(m,n−2))=am+1(−1)0(0n)(m+1)0+10!×logn−0(a)+am+1(−1)1(1n)(m+1)1+11!×logn−1(a)+(−1)2(2n)(m+1)22!I(m,n−2)=…=am+1(−1)0(0n)(m+1)0+10!×logn−0(a)+am+1(−1)1(1n)(m+1)1+11!×logn−1(a)+am+1(−1)2(2n)(m+1)2+12!×logn−2(a)+…+(−1)n(nn)(m+1)nn!I(m,0)=am+1(−1)0(0n)(m+1)0+10!×logn−0(a)+am+1(−1)1(1n)(m+1)1+11!×logn−1(a)+am+1(−1)2(2n)(m+1)2+12!×logn−2(a)+…+am+1(−1)n(nn)(m+1)n+1n!×logn−n(a)=am+1k=0∑n(−1)k(kn)(m+1)k+1k!×logn−k(a). ■
#Calculus
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
∫01xmlogn(x)dx taking log(x)=t and t=−u ∫−∞0e(m+1)ttndt=∫0∞(−1)ne−(m+1)uundu Taking (m+1)u=ϕ , then the integral becomes (m+1)n+1(−1)n∫0∞e−ϕϕndϕ=(m+1)n+1(−1)nΓ(n+1) =(m+1)n+1n!(−1)n
Here is Another way Consider I(m)=∫01xmdx⟹I(m)=m+11 Differentiate both sides respect to m for n times ∂mn∂nI(m)=∫01xmlogn(x)dx=(m+1)n+1(−1)nn! A hah! :)