\(Triangle ABC\quad be\quad a\quad right\quad triangle\quad with\quad \angle ABC\quad =90.\quad BD\quad be\quad the\quad perpendicular\quad on\quad AC\quad .\\ \quad \\ Then,\triangle ABD\sim \triangle ABC\quad and\quad \triangle BDC\quad \sim \triangle ABC.\\ \frac { ar(\triangle BDC) }{ ar(\triangle ABC)\quad } =\frac { { BC }^{ 2 } }{ { AC }^{ 2 } } \quad \quad \quad -{ eq }uation\quad 1\\ \frac { { ar(\triangle ADB) } }{ { ar(\triangle }ABC) } =\frac { { AB }^{ 2 } }{ { AC }^{ 2 } } \quad \quad \quad \quad -equation\quad 2\\ Adding\quad 1\& 2\quad we\quad get,\\ \frac { ar(\triangle ADB)+ar(\triangle BDC) }{ ar(\triangle ABC) } =\frac { { { BC }^{ 2 }+{ AB }^{ 2 } } }{ { AC }^{ 2 } } \\ \frac { ar(\triangle ABC) }{ ar(\triangle ABC) } =\frac { { { BC }^{ 2 }+{ AB }^{ 2 } } }{ { AC }^{ 2 } } \\ 1=\frac { { { BC }^{ 2 }+{ AB }^{ 2 } } }{ { AC }^{ 2 } } \\ { { AC }^{ 2 } }={ BC }^{ 2 }+{ AB }^{ 2 }\\ \\ Pythgoras\quad theorem\quad proved!\)
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.