A Series Problem!

Dear friends i am having a problem in series with factorials

r=1nr2r1(r+1)!\displaystyle \sum _{ r=1 }^{n }{ \frac { { r }^{ 2 }-r-1 }{ (r+1)! } }

i need to know how to solve the above problem. a solution would be welcome.

#Factorials #SumOfSeries

Note by Nishant Singh
5 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Do it like this:r=1nr2r1(r+1)!=r=1n(r2+r)2(r+1)+1(r+1)!=r=1n{(r2+r)(r+1)!2(r+1)(r+1)!+1(r+1)!}=r=1n(r2+r)(r+1)!2r=1n(r+1)(r+1)!+r=1n1(r+1)!=r=1n1(r1)!2r=1n1r!+r=1n1(r+1)!=x=0n11x!2x=0n11(x+1)!+x=0n11(x+2)!=(10!+11!+12!+...+1(n1)!)2(11!+12!+...+1n!)+(12!+13!+...+1(n+1)!)=10!11!1n!+1(n+1)!=n(n+1)!\sum _{ r=1 }^{ n }{ \frac { { r }^{ 2 }-r-1 }{ \left( r+1 \right) ! } } \\ =\sum _{ r=1 }^{ n }{ \frac { \left( { r }^{ 2 }+r \right) -2\left( r+1 \right) +1 }{ \left( r+1 \right) ! } } \\ =\sum _{ r=1 }^{ n }{ \left\{ \frac { \left( { r }^{ 2 }+r \right) }{ \left( r+1 \right) ! } -\frac { 2\left( r+1 \right) }{ \left( r+1 \right) ! } +\frac { 1 }{ \left( r+1 \right) ! } \right\} } \\ =\sum _{ r=1 }^{ n }{ \frac { \left( { r }^{ 2 }+r \right) }{ \left( r+1 \right) ! } } -2\sum _{ r=1 }^{ n }{ \frac { \left( r+1 \right) }{ \left( r+1 \right) ! } } +\sum _{ r=1 }^{ n }{ \frac { 1 }{ \left( r+1 \right) ! } } \\ =\sum _{ r=1 }^{ n }{ \frac { 1 }{ \left( r-1 \right) ! } } -2\sum _{ r=1 }^{ n }{ \frac { 1 }{ r! } } +\sum _{ r=1 }^{ n }{ \frac { 1 }{ \left( r+1 \right) ! } } \\ =\sum _{ x=0 }^{ n-1 }{ \frac { 1 }{ x! } } -2\sum _{ x=0 }^{ n-1 }{ \frac { 1 }{ \left( x+1 \right) ! } } +\sum _{ x=0 }^{ n-1 }{ \frac { 1 }{ \left( x+2 \right) ! } }\\=\left( \frac { 1 }{ 0! } +\frac { 1 }{ 1! } +\frac { 1 }{ 2! } +...+\frac { 1 }{ \left( n-1 \right) ! } \right) -2\left( \frac { 1 }{ 1! } +\frac { 1 }{ 2! } +...+\frac { 1 }{ n! } \right) +\left( \frac { 1 }{ 2! } +\frac { 1 }{ 3! } +...+\frac { 1 }{ \left( n+1 \right) ! } \right) \\ =\frac { 1 }{ 0! } -\frac { 1 }{ 1! } -\frac { 1 }{ n! } +\frac { 1 }{ \left( n+1 \right) ! } \\ =-\frac { n }{ \left( n+1 \right) ! }

Kuldeep Guha Mazumder - 5 years, 6 months ago

Log in to reply

Thank You! for the solution

nishant singh - 5 years, 6 months ago

Log in to reply

You're welcome! Hope I could make it clear..

Kuldeep Guha Mazumder - 5 years, 6 months ago

Hint:- Try to find a telescoping series.

Siddhartha Srivastava - 5 years, 7 months ago

Log in to reply

Tried it but I'm unable to split in partial fractions.

nishant singh - 5 years, 7 months ago

Log in to reply

You should be getting partial fractions of the form r(r+1)! \frac{r}{(r+1)!} .

Siddhartha Srivastava - 5 years, 7 months ago
×

Problem Loading...

Note Loading...

Set Loading...