A series

Find 121!+12+222!+12+22+323!+........infinite terms\frac{1^2}{1!}+\frac{1^2+2^2}{2!}+\frac{1^2+2^2+3^2}{3!}+........infinite~terms=?

Note by Tanishq Varshney
6 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

S=121!+12+222!+...=n=1[k=1nk2n!]=n=1(n(n+1)(2n+1)6)n!=16[n=1n(n+1)(2n+1)n!]=16[n=1(n+1)(2n+1)(n1)!]=16[n=0(n+2)(2n+3)n!]S = \frac{1^2}{1!} + \frac{1^2 + 2^2}{2!} + ... \\ = \sum_{n=1}^\infty[\frac{\sum_{k=1}^n k^2}{n!}] \\ = \sum_{n=1}^\infty\frac{(\frac{n(n+1)(2n+1)}{6})}{n!} \\ = \frac{1}{6}[\sum_{n=1}^\infty\frac{n(n+1)(2n+1)}{n!}] \\ = \frac{1}{6}[\sum_{n=1}^\infty\frac{(n+1)(2n+1)}{(n-1)!}] \\ = \frac{1}{6}[\sum_{n=0}^\infty\frac{(n+2)(2n+3)}{n!}] Now define f(x)=n=0[(n+2)(2n+3)n!xn].f(x) = \sum_{n=0}^\infty [\frac{(n+2)(2n+3)}{n!}x^n]. f(x)f(x) is the Taylor series of g(x)=ex(2x2+9x+6)g(x) = e^x(2x^2 + 9x + 6) centered at x=0.x=0. Let x=1,x=1, then f(1)=g(1)=e(2+9+6)=17e.f(1) = g(1) = e(2 + 9 + 6) = 17e. Also, S=n=0(n+2)(2n+3)n!×1nS = \sum_{n=0}^\infty\frac{(n+2)(2n+3)}{n!}\times 1^n which is equal to f(1)f(1) from the definition of f(x).f(x). Therefore S=16f(1)=17e6S = \frac{1}{6}f(1) = \frac{17e}{6}

Edit: Wow, this note and solution have become quite popular within two hours of posting. For new viewers who are curious about any step in the proof, please see the discussion below, and if it is not explained, please comment in the discussion and I will try to answer.

Caleb Townsend - 6 years, 2 months ago

Log in to reply

I apologize if this proof is not concise, as this is the first calculus based proof of a nontrivial (or is it?) series I have ever written. I will clarify in the comments any step that anyone is unsure about. Before then, here are two things I used in the proof, but did not explicitly prove for convenience, as they are proven easily. k=1nk2=n(n+1)(2n+1)6. Sum of squares formula; proven by inductionex(2x2+9x+6)=g(x)=n=0g(n)(0)n!xn. Maclaurin/Taylor series, x0=0\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}. \text{ Sum of squares formula; proven by induction} \\ e^x(2x^2 + 9x + 6) = g(x) = \sum_{n=0}^\infty \frac{g^{(n)}(0)}{n!}x^n. \text{ Maclaurin/Taylor series, } x_0=0

Caleb Townsend - 6 years, 2 months ago

Log in to reply

Nice approach, Caleb. I had reached a similar f(x)f(x) as you but got stuck trying to establish the corresponding Taylor series. I tried taking the second derivative of the Taylor series for x2exx^{2}e^{x} and then multiplying by xx but this didn't give me the 2n+32n + 3 factor. How did you determine the (2x2+9x+6)(2x^{2} + 9x + 6) term?

Brian Charlesworth - 6 years, 2 months ago

Log in to reply

@Brian Charlesworth I am not 100% sure how to answer, do you mean how did I know to use 2x2+9x+6,2x^2 + 9x + 6, or do you mean how did I get the series expansion?

Caleb Townsend - 6 years, 2 months ago

Log in to reply

@Caleb Townsend Yes, I was wondering what your method was to determine the 2x2+9x+62x^{2} + 9x + 6 term. I knew that I would have to manipulate the series for exe^{x} and its derivatives somehow, but wasn't able to complete the task.

Brian Charlesworth - 6 years, 2 months ago

Log in to reply

@Brian Charlesworth I think you were on the same track as me, I had been working for over 20 minutes on this problem so I had time to have fun. To my knowledge the easiest way to solve problems like this (polynomial in numerator, factorial in denominator) is to find a taylor series of the same degree as the polynomial in the numerator, using an exponential (usually exe^x), then let x=1x = 1 so that xn=1  n.x^n = 1\ \forall\ n. I started with ex(ax2+bx+c)e^x(ax^2 + bx + c) and got the first three terms of the Maclaurin series to be c+(b+c)x+(a+b+c/2)x2.c + (b+c)x + (a + b + c/2)x^2. Comparing this to the first few values of (n+3)(2n+3)n!xn,\frac{(n+3)(2n+3)}{n!}x^n, (namely 6, 15x, 14x26,\ 15x,\ 14x^2) c=6b+c=15b=9a+b+c2=14a=2c = 6 \\ b+c = 15 \Rightarrow b = 9 \\ a + b + \frac{c}{2} = 14 \Rightarrow a = 2 I think this method is only valid for Maclaurin series as I tried it on a series about infinity and it did not yield the correct answer, but I have never retried on any other Taylor series at infinity. If so then series that don't converge at 00 may require different reasoning, which I have no clue of. In the words of my Calc II teacher, "math is a form of fine art."

By the way, I saw in another problem that someone asked if you are a teacher, but I never saw the answer. May I ask now if you teach mathematics? You are efficient in the way you solve problems, similar to how some professors and teachers use the fastest method that is on par with the course level, while still retaining the solution's ability to teach.

Caleb Townsend - 6 years, 2 months ago

Log in to reply

@Caleb Townsend Ah, o.k., that works well. So you assume the general form and then solve for the specifics; I'll try this method now on Pi Han Goh's new question. Thanks for the explanation. :)

Math is just a recreation for me, (although I do have a background in it), and I've never taught the subject. I do try, though, to "think like a professor" when tailoring my solutions to the respective level of the questions, so I'm glad to hear that this mindset yields the desired effect. Is it a goal of yours to be a professor someday?

Brian Charlesworth - 6 years, 2 months ago

Log in to reply

@Brian Charlesworth Haha well it is the "backup plan," in fact I couldn't realistically be a professor without getting speech therapy first.

Caleb Townsend - 6 years, 2 months ago

Log in to reply

@Caleb Townsend Oh, o.k., I never once looked at a professor and thought, "Gosh, I want to be up there teaching someday just like you!" Researching and solving real-world problems at some progressive corporation always seemed like a more attractive option if I had pursued a career in mathematics.

Brian Charlesworth - 6 years, 2 months ago

I knew you will come up with an interesting idea .... ¨\ddot\smile

Nihar Mahajan - 6 years, 2 months ago

indeed very nice, good, excellent, can u generalise for this r=0rnr!\large{\displaystyle \sum_{r=0}^{\infty} \frac{r^n}{r!}}.

Tanishq Varshney - 6 years, 2 months ago

Log in to reply

Well I am familiar with that problem but I do not believe the proof is concise, but the result will be the product of a Bell number and e.e. In fact it is r=0rnr!=Bn×e\sum_{r=0}^\infty \frac{r^n}{r!} = B_n \times e if I'm not mistaken.

Caleb Townsend - 6 years, 2 months ago

Log in to reply

@Caleb Townsend thanx for the help ¨\ddot \smile

Tanishq Varshney - 6 years, 2 months ago

Actually I would like to amend this comment, I think what you mean is r=1k=1rknr!\sum_{r=1}^\infty \frac{\sum_{k=1}^r k^n}{r!} which is not (at least in general) equal to Bn×e.B_n\times e. I do not know the value of that expression but Pi Han Goh has posted the case n=7, which may help generalize. His solution in particular covers use of the Bell numbers.

Caleb Townsend - 6 years, 2 months ago

Can you elaborate on how you get 2x2+9x+62x^2 +9x+6 ?

Pi Han Goh - 6 years, 2 months ago

Log in to reply

I have now posted the method under Brian Charlesworth's comment in this discussion.

Caleb Townsend - 6 years, 2 months ago

Log in to reply

Log in to reply

@Pi Han Goh Great new question, but I think that you meant to write 24e×W.\dfrac{24}{e} \times W. :)

Brian Charlesworth - 6 years, 2 months ago

@Pi Han Goh Neat problem, I have started to solve it but my method seems like it will take a while. I do think there may be a problem in the statement though; do you perhaps mean 24e×W?\frac{24}{e}\times W? The sum's numerator should be a multiple of e.e.

Caleb Townsend - 6 years, 2 months ago

Log in to reply

@Caleb Townsend Yep, typo, thanks! @Brian Charlesworth

Pi Han Goh - 6 years, 2 months ago

@Calvin Lin sir, plz help by posting a solution

Tanishq Varshney - 6 years, 2 months ago

I don't really understand your expression, but isn't anything plus \infty equals \infty?

You should change your expression into a summation :)

Trung Đặng Đoàn Đức - 6 years, 2 months ago
×

Problem Loading...

Note Loading...

Set Loading...