Consider a set of consecutive terms from an arithmetic progression. Take any 2 terms and replace them by their average. Continue this until only one number remains. Prove that the mean of all end numbers (they need not be distinct) is equal to the median and, for , the mode.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Oh wow, wasn't expecting the mean, mode and median to be the same.
I guess that the first step is: "How many different ways are they to do this for n consecutive terms?"