A man can cross a 100 meter width river in 4 minutes straightly when there is no current in the river.But when the current is available he can cross it in 5 minutes.What is the speed of the current?
This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
His velocity is 100 meters in 4 minutes, or 25 meters per minute.
It states that with a river current, he takes 5 minutes to cross. This means he traveled a total of 125 meters relative to the current.
Now suppose that instead of the river having a current and the man traveling in a straight line, the river is still stationary and the man is traveling in a slanted line. We have that the slanted line is 125 meters, the distance from coast to coast is 100 meters; therefore, he traveled 1252−1002=75 meters away from the point where he would have landed if he had traveled in a line perpendicular to the river. This 75 meters accounts for the current: the current travels 75 meters in 5 seconds, or 25 meters per second.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
His velocity is 100 meters in 4 minutes, or 25 meters per minute.
It states that with a river current, he takes 5 minutes to cross. This means he traveled a total of 125 meters relative to the current.
Now suppose that instead of the river having a current and the man traveling in a straight line, the river is still stationary and the man is traveling in a slanted line. We have that the slanted line is 125 meters, the distance from coast to coast is 100 meters; therefore, he traveled 1252−1002=75 meters away from the point where he would have landed if he had traveled in a line perpendicular to the river. This 75 meters accounts for the current: the current travels 75 meters in 5 seconds, or 25 meters per second.
Log in to reply
The last computation is the most awful one, no? "75 minutes in 5 minutes, or 15 meters per minute" (or 0.25 meters per second).
75 meters in five minutes so its 0.25 meters per second.........??
Thanks
Its 15m/s.