Dynamic Geometry: P80 Series

This note provides the general calculations in the solutions to problems titled Dynamic Geometry P80, 85, 90, 95, 99, and 105 so far by @Valentin Duringer.

Radii of Circles and Semicircles

Let the center of the big semicircle be OO, its radius 11 and diameter ABAB, the center and radius of the purple circle be PP and rr, the segment OPOP meets the unit semicircle at CC, PNPN be perpendicular to ABAB, COB=θ\angle COB = \theta and t=tanθ2t = \tan \frac \theta 2 (refer to half-angle tangent substitution). Then

OP+PC=OCPNcscθ+PC=OCrcscθ+r=1    r=11+cscθ=2t(1+t)2\begin{aligned} OP + PC & = OC \\ PN \cdot \csc \theta + PC & = OC \\ r \csc \theta + r & = 1 \\ \implies r & = \frac 1{1+\csc \theta} = \frac {2t}{(1+t)^2} \end{aligned}

Let the center and radius of the cyan semicircle be RR and r2r_2. By Pythagorean theorem,

PN2+NR2=PR2PN2+(OBONRB)2=PR2r2+(1rcotθr2)2=(r+r2)2r2+(12t(1+t)21t22tr2)2=r2+2rr2+r22(11t1+tr2)2=2rr2+r22(2t1+tr2)2=2rr2+r224t2(1+t)24t1+tr2+r22=4t(1+t)2r2+r224t24t(1+t)r2=4tr2    r2=t2+t\begin{aligned} PN^2 + NR^2 & = PR^2 \\ PN^2 + (OB-ON-RB)^2 & = PR^2 \\ r^2 + (1-r \cot \theta - r_2)^2 & = (r+r_2)^2 \\ r^2 + \left(1 - \frac {2t}{(1+t)^2} \cdot \frac {1-t^2}{2t} - r_2 \right)^2 & = r^2 + 2rr_2 + r_2^2 \\ \left(1 - \frac {1-t}{1+t} - r_2 \right)^2 & = 2rr_2 + r_2^2 \\ \left(\frac {2t}{1+t} - r_2 \right)^2 & = 2rr_2 + r_2^2 \\ \frac {4t^2}{(1+t)^2} - \frac {4t}{1+t} r_2 + r_2^2 & = \frac {4t}{(1+t)^2} r_2 + r_2^2 \\ 4t^2 - 4t(1+t) r_2 & = 4t r_2 \\ \implies r_2 & = \frac t{2+t} \end{aligned}

Let the center and radius of the green semicircle be QQ and r1r_1. We note that the green and cyan semicircles are interchangeable with θ\theta replaced with πθ\pi - \theta, then tt replaced with tan(πθ2)=cotθ2=1t\tan \left(\frac {\pi - \theta}2 \right) = \cot \frac \theta 2 = \frac 1t. Therefore,

r1=1t2+1t=11+2tr_1 = \frac {\frac 1t}{2+\frac 1t} = \frac 1{1+2t}

Let the center and radius of the orange circle be TT and r4r_4. By Decartes' theorem,

1r4=1r+1r211+21rr21r1r2=(1+t)22t+2+tt1+2(1+t)2(2+t)2t2(1+t)22t2+tt=t2+2t+52t+2t=t2+2t+92t    r4=2tt2+2t+9\begin{aligned} \frac 1{r_4} & = \frac 1r + \frac 1{r_2} - \frac 11 + 2 \sqrt{\frac 1{rr_2}-\frac 1r - \frac 1{r_2}} \\ & = \frac {(1+t)^2}{2t} + \frac {2+t}t - 1 + 2\sqrt{\frac {(1+t)^2(2+t)}{2t^2}-\frac {(1+t)^2}{2t} - \frac {2+t}t } \\ & = \frac {t^2+2t+5}{2t} + \frac 2t = \frac {t^2 + 2t + 9}{2t} \\ \implies r_4 & = \frac {2t}{t^2+2t+9} \end{aligned}

Let the center and radius of the red circle be SS and r3r_3. Again r3r_3 and r4r_4 are interchangeable, we have:

r3=2t1t2+2t+9=2t9t2+2t+1r_3 = \frac {\frac 2t}{\frac 1{t^2} + \frac 2t + 9} = \frac {2t}{9t^2 + 2t + 1}

Centers of Circles and Semicircles

Setting the center OO of the unit semicircle to be (0,0)(0,0) of the xyxy-plane, the center P(x0,y0)P(x_0,y_0) of the purple circle is given by:

{x0=PNcscθ=r1t22t=2t(1+t)21t22t=1t1+ty0=r=2t(1+t)2\begin{cases} x_0 = PN \cdot \csc \theta = r \cdot \dfrac {1-t^2}{2t} = \dfrac {2t}{(1+t)^2} \cdot \dfrac {1-t^2}{2t} = \dfrac {1-t}{1+t} \\ y_0 = r = \dfrac {2t}{(1+t)^2} \end{cases}

The center of the green semicircle Q(x1,y1)=(r11,0)=(11+2t1,0)=(2t1+2t,0)Q(x_1,y_1) = (r_1-1, 0) = \left(\dfrac 1{1+2t}-1, 0 \right) = \left(- \dfrac {2t}{1+2t}, 0 \right).
The center of the cyan semicircle R(x2,y2)=(1r2,0)=(1t2+t,0)=(22+t,0)R(x_2, y_2) = (1-r_2, 0) = \left(1 - \dfrac t{2+t},0 \right) = \left(\dfrac 2{2+t}, 0 \right).

Let the center of the orange circle be T(x4,y4)T(x_4, y_4). By Pythagorean theorem, OT2OM2=TM2OT^2-OM^2 = TM^2 and TR2MR2=TM2TR^2 - MR^2 = TM^2. Therefore,

OT2OM2=TR2MR2(1r4)2x42=(r2+r4)2(1r2x)212r4=2r2r41+2r2+2(1r2)x4x4=1r2r4r2r41r2=11+r21r2r4=12t(1+t)t2+2t+9=9t2t2+2t+9\begin{aligned} OT^2 - OM^2 & = TR^2 - MR^2 \\ (1-r_4)^2 - x_4^2 & = (r_2+r_4)^2 - (1-r_2 - x)^2 \\ 1 - 2r_4 & = 2r_2r_4 - 1 + 2r_2 + 2(1-r_2)x_4 \\ x_4 & = \frac {1-r_2 - r_4 - r_2r_4}{1-r_2} = 1 - \frac {1+r_2}{1-r_2}r_4 \\ & = 1 - \frac {2t(1+t)}{t^2+2t+9} = \frac {9-t^2}{t^2+2t+9} \end{aligned}

From TM2=OT2OM2TM^2 = OT^2 - OM^2:

y42=(1r4)2x42=(9+t2t2+2t+9)2(9t2t2+2t+9)2=36t2(t2+2t+9)2    y4=6tt2+2t+9\begin{aligned} y_4^2 & = (1-r_4)^2 - x_4^2 = \left(\frac {9+t^2}{t^2+2t+9} \right)^2 - \left(\frac {9-t^2}{t^2+2t+9} \right)^2 = \frac {36t^2}{(t^2+2t+9)^2} \\ \implies y_4 & = \frac {6t}{t^2+2t+9} \end{aligned}

Replacing tt with 1t\dfrac 1t, we have the coordinates of the center of the red circle S(x3,y3)S(x_3,y_3):

x3=9t219t2+2t+1,y3=6t9t2+2t+1x_3 = \dfrac {9t^2-1}{9t^2 + 2t + 1}, \quad \quad y_3 = \dfrac {6t}{9t^2+2t+1}

Vertices of Triangles

Let the point where the orange circle is tangent to the cyan semicircle be T1(x41,y41)T_1 (x_{41},y_{41}) and T1UT_1U be perpendicular to TMTM. Note that TT1U\triangle TT_1U and TRM\triangle TRM are similar. Then

UT1MR=TT1TR=r4r2+r4    r4r2+r4MRUMTM=T1RTR=r2r2+r4    UM=r2r2+r4TM\frac {UT_1}{MR} = \frac {TT_1}{TR} = \frac {r_4}{r_2+r_4} \implies \frac {r_4}{r_2+r_4} \cdot MR \quad \frac {UM}{TM} = \frac {T_1R}{TR} = \frac {r_2}{r_2+r_4} \implies UM = \frac {r_2}{r_2+r_4} \cdot TM

Then the coordinates of T1T_1 are

{x41=OM+UT1=x4+r4(1r2x4)r2+r4=13t2t2+4t+13y41=UM=r2r2+r4y4=6tt2+4t+13\begin{cases} x_{41} = OM + UT_1 = x_4 + \dfrac {r_4(1-r_2-x_4)}{r_2+r_4} = \dfrac {13-t^2}{t^2+4t+13} \\ y_{41} = UM = \dfrac {r_2}{r_2+r_4} y_4 = \dfrac {6t}{t^2+4t+13} \end{cases}

Replacing tt with 1t\dfrac 1t and negative direction for xx-coordinate, the corresponding point S1(x31,y31)S_1(x_{31}, y_{31}) of the red circle is:

x31=113t213t2+4t+1,y31=6t13t2+4t+1x_{31} = \frac {1-13t^2}{13t^2+4t+1}, \quad \quad y_{31} = \frac {6t}{13t^2+4t+1}

Let the point where the orange circle is tangent to the purple circle be T2(x42,y42)T_2 (x_{42},y_{42}). By interpolation,

{x42=rx4+r4x0r+r4=5t2t2+2t+5y42=ry4+r4y0r+r4=4tt2+2t+5\begin{cases} x_{42} = \dfrac {rx_4+r_4x_0}{r+r_4} = \dfrac {5-t^2}{t^2+2t+5} \\ y_{42} = \dfrac {ry_4+r_4y_0}{r+r_4} = \dfrac {4t}{t^2+2t+5} \end{cases}

Replacing tt with 1t\dfrac 1t and negative direction for xx-coordinate, the corresponding point S1(x32,y32)S_1(x_{32}, y_{32}) of the red circle is:

x32=15t25t2+2t+1,y32=4t5t2+2t+1x_{32} = \frac {1-5t^2}{5t^2+2t+1}, \quad \quad y_{32} = \frac {4t}{5t^2+2t+1}

Let the point where the orange circle is tangent to the unit semicircle be T3(x43,y43)T_3 (x_{43},y_{43}). By extrapolation,

{x43=x41r4=9t2t2+9y43=y41r4=6tt2+9\begin{cases} x_{43} = \dfrac {x_4}{1-r_4} = \dfrac {9-t^2}{t^2+9} \\ y_{43} = \dfrac {y_4}{1-r_4} = \dfrac {6t}{t^2+9} \end{cases}

Replacing tt with 1t\dfrac 1t and negative direction for xx-coordinate, the corresponding point S1(x33,y33)S_1(x_{33}, y_{33}) of the red circle is:

x33=19t29t2+1y33=6t9t2+1x_{33} = \frac {1-9t^2}{9t^2+1} \quad \quad y_{33} = \frac {6t}{9t^2+1}

#Geometry

Note by Chew-Seong Cheong
2 months, 1 week ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Great work !

Valentin Duringer - 2 months ago

Log in to reply

That was why it took me so long.

Chew-Seong Cheong - 2 months ago

Log in to reply

I get it now ! Are going to post a solution to P107, 101 and 98?

Valentin Duringer - 2 months ago

Log in to reply

@Valentin Duringer I will write solution of 98 first. Need same treatment as P80 series

Chew-Seong Cheong - 2 months ago
×

Problem Loading...

Note Loading...

Set Loading...