Tricky algebra

The sum 7/12 + 9360/d is an integer. Compute the smallest positive integral value for d.

Note by Bohong Selalu
8 years ago

No vote yet
7 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Write the second fraction as c.m/c.n where the greatest common divisor of m and n is 1. If 7/12 + m/n is to be some integer k, then 7n + 12m = 12nk ->12m = 12nk - 7n -> m = nk - 7 (n/12) . Therefore 12 divides n. We also have that 7n = 12nk - 12m -> 7 = 12k - 12m/n . But since m and n are relatively prime, we have that n divides 12. So n = 12. Therefore our goal is to have that when the fraction is reduced the denominator is 12. We need to find the smallest c so that the numerator 9360 has no factors of 12. Dividing 9360 by 12 two times shows that 9360 = 12^2 * 65. So c = 12^2 for the smallest value of d, and d = 12^2 12 = 1728. We must check that this is indeed an integer, and it is because 7/12 + 65/12 = 72/12 = 6. So d = 1728. CMIIW

snah a - 8 years ago

I think the answer is 1728 and the integer is 6

Avraam Aneleitos - 8 years ago

12

Sumit Sarkar - 8 years ago

you should specify that d is positive

Justin Wong - 8 years ago

Log in to reply

it was specified so.

Jonathan Wong - 8 years ago
×

Problem Loading...

Note Loading...

Set Loading...