This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
Write the second fraction as c.m/c.n where the greatest common divisor of m and n is 1. If 7/12 + m/n
is to be some integer k, then 7n + 12m = 12nk ->12m = 12nk - 7n -> m = nk - 7 (n/12) . Therefore 12
divides n.
We also have that 7n = 12nk - 12m -> 7 = 12k - 12m/n . But since m and n are relatively
prime, we have that n divides 12. So n = 12. Therefore our goal is to have that when the fraction is
reduced the denominator is 12. We need to find the smallest c so that the numerator 9360 has no factors
of 12. Dividing 9360 by 12 two times shows that 9360 = 12^2 * 65. So c = 12^2 for the smallest value of d,
and d = 12^2 12 = 1728. We must check that this is indeed an integer, and it is because 7/12 + 65/12 = 72/12 = 6.
So d = 1728.
CMIIW
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Write the second fraction as c.m/c.n where the greatest common divisor of m and n is 1. If 7/12 + m/n is to be some integer k, then 7n + 12m = 12nk ->12m = 12nk - 7n -> m = nk - 7 (n/12) . Therefore 12 divides n. We also have that 7n = 12nk - 12m -> 7 = 12k - 12m/n . But since m and n are relatively prime, we have that n divides 12. So n = 12. Therefore our goal is to have that when the fraction is reduced the denominator is 12. We need to find the smallest c so that the numerator 9360 has no factors of 12. Dividing 9360 by 12 two times shows that 9360 = 12^2 * 65. So c = 12^2 for the smallest value of d, and d = 12^2 12 = 1728. We must check that this is indeed an integer, and it is because 7/12 + 65/12 = 72/12 = 6. So d = 1728. CMIIW
I think the answer is 1728 and the integer is 6
12
you should specify that d is positive
Log in to reply
it was specified so.